/Top Page/Research Research Topics
Motivation †We aim human-robotic systems collaborative interaction in daily living environments in order to support and enhance human activities. The robotic systems are required to behave in a daily living environment autonomously. Intelligence Space (iSpace) is one of the effective approaches to realize autonomous robots in a dynamic environment. As iSpace is a technical platform for autonomous robots, we are working on long-term and sustainable human-robot communication in a daily living environment as shown below. Through these researches, we aim to realize assistive robotics to socially and cognitively support and enhance human activities. Current research topics †[iS] Intelligent Space (iSpace) as a platform to realize autonomous robotics in daily living environments †Intelligent environments are being studied to support and enhance human activity by observing subjects using distributed networked sensors, recognizing human activity, and providing services using distributed actuators such as displays and mobile robots. To observe the dynamic environment, many intelligent devices, called distributed intelligent network devices (DINDs), are placed in an intelligent environment. We named this space “Intelligent Space” (iSpace). The DIND, a basic iSpace element, consists of three basic components -- sensors, processors, and network devices. Communicating with individual DINDs enables iSpace to apprehend and understand events in this space and to activate intelligent agents such as mobile robots, computer devices, and digital equipment to provide information and services to users based on observed information.
[Etho] Ethologically inspired human-robot communication †To realize long-term and sustainable human-robot communication, we build a robot behavioral model inspired by human-dog relationships. Dogs are able to build social relationships with humans. Humans are also able to interpret dogs' behaviors according to their context. Therefore, we try to apply dogs' behaviors to human-robot communication.
[P] Personal Mobility Tool: cooperative smart electric wheelchair †We aim to enable a user to operate an electric wheelchair without continuos input to reduce physical load of its operation. Therefore, we integrate direction input from the user and autonomous mobile robot navigation, name it PMT (personal mobility tool). Here, the user hardly predicts the PMT movement when it moves autonomously. To help the user predict and understand the PMT movement, we design mutual interaction between the user and the PMT. The PMT provides feedback to the user, for example, sensing result (distance to obstacles) and traveling direction.
[Cog] Assistive robotics for cognitive infocommunication †Human perception and cognition enhancement using robotic systems is also one of our research areas.
Sensing and recognition techniques are applied to bridge sensory information between a human and a robotics system.
Equipment †(June, 2016)
|