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Abstract. This paper presents a novel method for grasping objects with
varying stiffness using an underactuated hand and a stereo camera. In
factories, robots are required to handle a wide variety of objects. Tasks
such as grasping soft objects without causing damage are particularly
important in industries like food processing. While many existing ap-
proaches equip robotic hands with sensors, such as force or pressure
sensors, these methods are unsuitable for food items due to hygiene con-
cerns. To address the challenges of grasping various objects without caus-
ing damage or dropping them, underactuated hands that can conform to
object shapes have gained attention.

In this study, we propose a method for controlling an underactuated
hand using only a stereo camera as an external sensor. First, the target
object is detected using a background subtraction method. Next, the
contact between the hand and the object is detected. Then, the object
is grasped with appropriate force, calculated based on four elements:
the centroid shifts of the hand and the object, the deformation rate of
the object, and the occlusion rate of the hand. Finally, drop detection
is performed to ensure the object is not dropped during pick-and-place
tasks. Experiments were conducted using six different objects to validate
the proposed method.
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1 Introduction

With the advancement of mass production of many models in small quantities,
the demand for robots to handle a wide variety of objects is increasing. Therefore,
robots need to grasp not only hard objects, such as metal products, but also
soft objects, such as food items. Moreover, there are objects with hard surfaces
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that may crush if the grasping force is too large. Similarly, if soft objects are
not grasped with the proper force, it may cause the object to drop and lead
to damage. Thus, it is necessary to grasp objects of varying stiffness with the
proper force.

To grasp various objects, the underactuated hands are gaining attention[1].
These hands have a high degree of freedom, allowing them to deform according to
the shape of the object. Thanks to this characteristic, the contact area between
the hand and the object becomes larger, enabling stable grasping and allowing
the handling of easily damaged objects. However, due to their adaptability, it is
difficult to detect the grasping state, such as the contact area, grasping force, or
potential damage and dropping of the object.

Many studies use tactile sensors and force sensors for grasping objects [2—
4]. Some studies equip a small camera on the finger [5,6]. By obtaining force
information from sensors, it may be possible to grasp objects without applying
excessive force. However, the contact area between the sensor and the object
becomes small, which means the deformation of the entire object might not
be detected, potentially resulting in damage to the object. Furthermore, there
are issues such as the inability to detect the appropriate force due to sensor
contamination, as well as the increased complexity of the system caused by the
integration of sensors.

Instead of embedding sensors in the hand, some research uses a camera as an
external sensor to observe the hand from the outside[7, 8]. These methods rec-
ognize the grasping state by using markers attached to the hand and the object.
However, it is impossible to attach markers to food items or everyday products.
In the previous research, we proposed visual feedback control method for under-
actuated hand [9]. However, this method requires the color of the object before-
hand. In addition, because a monocular camera was used, only two-dimensional
image information could be acquired, making it impossible to accurately detect
crushed objects or falling objects.

In this paper, we propose a visual feedback control method for an underactu-
ated hand using a stereo camera. Using the background subtraction method, the
target object can be detected even when its color information is unknown. Ad-
ditionally, utilizing depth information acquired by stereo camera, enabling the
detection of the 3D deformation and movement of the object. To demonstrate
the effectiveness of the proposed method, grasping experiments are conducted
using objects with various colors and stiffness.

2 Visual Feedback Control Method

2.1 Overview of the method

The feedback control of the underactuated hand is performed using images ob-
tained from a stereo camera. A two-finger underactuated hand, without any
embedded sensors, is used. To control the underactuated hand, both the object
and the hand are captured by the stereo camera.
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An overview of the proposed method is shown in Fig. 1. In this method, four
types of detection are introduced for the visual feedback control of the underac-
tuated hand: object detection, contact detection, grasping state detection, and
drop detection. First, the target object is identified using a background subtrac-
tion method. After object detection, the hand begins to close. Then, contact
between the hand and the object is detected based on their contour information.
Next, during the grasping process, the grasping state is observed. The grasping
state is represented using four indices: the centroid shifts of the hand and the
object, the deformation rate of the object, and the occlusion rate of the hand.
Using these indices, the object is grasped with sufficient force without causing
damage. Once the grasping is completed, the object is lifted. During the lifting
process, droppage and rotation of the object are detected. By conducting these
detections, the proposed method enables the stable grasping and transportation
of objects with various sizes and stiffness without causing damage or dropping
them.

> Object detection >>Contact detection >> Graspmg'state >> Drop detection >
detection

Fig. 1. Overview of the visual feedback control method

2.2 Object Detection

Object detection is a method to identify the target object from an image. In
this study, we use background subtraction to detect the object to be grasped.
An overview of the object detection process is shown in Fig. 2. First, as shown
in Fig.2(a), an image is captured before the object is placed. Next, an image is
captured after the object is placed(Fig.2(b)). Then, the two images are converted
into grayscale image, and the difference between them is calculated(Fig.2(c)).
From this difference image, contours are detected. Among these contours, the
largest contour is considered as the target object for grasping. Based on the
contour of the largest object in Fig.2(b), an HSV color threshold is calculated
to extract only the region of the object. Using this HSV threshold, the target
object is detected from the color image in Fig.2(b), as shown in Fig.2(d).

2.3 Contact Detection

Contact detection identifies the contact between the hand and the object based
on images. An overview of the contact detection process is shown in Fig. 3.
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Fig. 2. Example of object detection: (a) Background image, (b) Foreground image, (c)
Difference image between (a) and (b), and (d) Extracted object.

Fig. 3(a) shows an input image. First, the input image is converted into the
HSV color space. Using the HSV information of the object calculated in Section
2.2 and the HSV information of the hand which is known beforehand, each region
is extracted respectively. Next, the contours of both the hand and the object are
obtained from the extracted regions. Afterwards, both contours are drawn in
different colors, as shown in Fig. 3(b). In Fig. 3(b), the hand’s contour is drawn
in blue, the object’s contour is drawn in red. When the hand and the object
come into contact, their contours overlap. In Fig. 3(c), the overlapping contours
are represented in magenta. For each finger of the hand, if the overlap of the
contours exceeds a certain threshold, it is detected as contact between the hand
and the object.

Fig. 3. Example of contact detection: (a) Input image, (b) Contours of the hand and
the object, (¢) Detection of contact through the overlap of both contours.

2.4 Grasp State Detection

To grasp objects without causing damage, the movement of the hand and defor-
mation of the object are detected during grasping. Some objects, such as potato
chips or box-shaped items, have hard surfaces but are fragile. On the other
hand, such as tofu or balloons, have soft surfaces and are easy to be damaged.
To adapt to objects of various stiffness, four indices are introduced as IfG (In-
dex for Grasping). Indices described in Sections 2.4.1 and 2.4.2 are designed for
grasping objects with hard surfaces, while those in Sections 2.4.3 and 2.4.4 are
intended for grasping objects with soft surfaces. Grasping is considered complete
if any of the IfG indices are satisfied.
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IfG;: Centroid Shift of The Hand IfG; involves calculating the movement
of the hand. When grasping objects with hard surfaces, the hand is expected to
stop moving after the contact with the object. If the object is brittle, continuing
to apply force may cause it to break. Therefore, it is necessary to observe whether
the hand is still moving.

Here, the movement of the hand is calculated based on the centroid infor-
mation from each finger. In Fig. 4, the centroid of the left and right fingers are
represented by blue circles. Assuming that the hand moves along the xy-plane
as shown in the upper left of Fig. 4, the 2D movement of the centroid is calcu-
lated. Denoting the centroid of the left and right fingers as (z;,y;) and (2, y,),
respectively. Then, the movement of the left and right fingers, denoted as diff;
and diff,., can be calculated by the following equations:

diffy = (21t — 1) — 21 (6))* + (wu(t — 1) — wi(t))? (1)
diff, = (2(t = 1) = 2(8))* + ((t = 1) = (¢))” (2)
Here, t and ¢ — 1 represent the image frames. The index IfG; is then calculated

as follows:

IfG, = diff; + diff,. (3)

Centroidiofithelfingens

Fig. 4. IfG;: Centroid Shift of The Hand

IfGs: Centroid Shift of The Object The second index IfGs is the calculation
of the movement of the object’s centroid. When the object has a soft surface, ap-
plying grasping force causes the force to spread and deform the object. However,
in the case of objects with a hard surface, the force does not escape towards the
object but rather towards the hand, creating a torque in the passive joints of
the hand. This results in rotational motion in the passive joints, which leads to
the movement of the object. Therefore, it is necessary to observe the movement
of the object. The movement of the object is determined by the centroid of the
object in the image. In Fig. 5, the centroid of the object is shown as a red circle.
When the centroid of the object is denoted as (Zob;, Yobj), IfG2 can be calculated
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using the following equation:
IfGa = (2ob; (0) = wob; (1)) + (Yob; (0) — Yob; (1)) (4)

Here, t represents the image frame, and ¢ = 0 denotes the first frame where
the calculation of IfGs begins. This allows us to calculate the movement of the
object during the grasping process.

Centhoidlofdthelob)ect

Fig. 5. IfGs: Centroid Shift of The Object

IfG3: Deformation of The Object The third index, IfGs, represents the
deformation of the object. For soft objects, excessive deformation may cause
damage. Therefore, it is important to calculate the overall deformation of the
object.

Previous studies have calculated the two-dimensional deformation of ob-
jects [9]. However, when grasping soft objects, it is also possible that the ob-
ject deforms along the depth direction in the image. Thus, we calculate the
deformation based on the object’s contour and the three-dimensional movement
of the points inside the contour. In Fig. 5, the object’s contour and internal
points are shown in green circles. When calculating the deformation, handling
three-dimensional point clouds requires time-consuming processes such as point
correspondence and downsampling. To address this problem, optical flow is ap-
plied using the Lukas-Kanade method [10]. The object’s contour is obtained from
the object region, and internal points are randomly distributed with a constant
density. Using optical flow, the points are tracked, and three-dimensional defor-
mation is calculated by acquiring depth information through a stereo camera.
Represent point for optical flow as P; = (2;,¥:, %), and the total number of
points N, IfGs is calculated using the following equation:

N
11y =+ > IIPs(t) ~ Pyt~ 1)) (5)

The displacement of each point on the object is normalized by dividing by the
total number of point N. This allows to detect the deformation in objects of
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different sizes, even if they belong to the same category. With this approach, the
deformation of the object can be successfully detected.

poimtslinSideltheliegion

Fig. 6. IfGs: Deformation of The Object

IfG4: Occlusion of The Object The fourth index, IfG,, represents the per-
centage of the hand’s area that is occluded by the object. Since only one camera
is used, certain areas where the object may deform cannot be captured by the
image. Therefore, by detecting the change in the area of the hand, it is possible
to prevent excessive force from being applied to the object, even if it is occluded.
In Fig. 7, the contour of the hand is shown in blue. The index IfG4, which in-
dicates the occlusion rate of the hand with respect to the object region, can be
calculated using the following equation.

(0) - Ahcmd (t)
Ao (0)

Here, Apand is the area of the hand, Ay, is the area of the object, and t is the
image frame. Since the force required for grasping differs depending on the size
of the object. Therefore, evaluating only the change in the hand’s occlusion area
is not sufficient. Therefore, in IfG4, the change in the hand’s area is normalized
by the object’s area. This approach enables to adjust grasping force for objects
of varying sizes within the same category.

IfG4 _ Ahand

(6)

2.5 Drop Detection

After grasping completion, the object lifting action is performed. During this
process, drop detection is conducted. The drop detection consists of two parts:
object drop detection and object rotation detection.

Object Drop Detection In object drop detection, not only the movement
of the object outside the hand’s workspace is considered, but also the state
where the object is sliding while moving within the hand is detected. When
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Fig. 7. IfG4: Occlusion of The Object

an object is dropping, the relative position between the hand and the object
changes. Therefore, the hand and object’s centroid information is used for drop
detection. The contour information is obtained from the input image, and the
average centroid of the object and the two fingers of the hand is calculated. The
distance between these two points is computed for each frame. In Fig. 8, the
object’s centroid is shown in red, the average centroid of the hand’s two fingers
is marked with a blue dot, and the line connecting the two points is drawn in
black. The change in distance between the two points, dg;y ¢, is calculated using
the following equation.

daiy = d(t) — d(0) (7)

Here, d(0) represents the distance before the arm movement, and d(¢) represents
the distance during the movement. If dg;r ; exceeds a certain threshold, the object
is considered as dropped. In this case, the value of d(¢) is updated by substituting
it for d(0), enabling continuous drop detection in subsequent frames.

X5

g

detection

Fig. 8. Object drop and rotation detection

Object Rotation Detection In rotation detection, the sliding of the object is
detected. In this method, principal component analysis (PCA) is applied to the
object’s contour, and the rotation of the object is determined by the change in
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the angle between the first principal component and the horizontal axis. In Fig.8,
the direction of the object’s first principal component is shown with a green line.
The change in angle f4;¢¢ can be calculated using the following equation:

Oairs = 0(t) — 6(0) (8)

Here, 6(0) represents the angle before the arm movement, and 6(t) represents the
angle during the movement. If 64;7¢ exceeds a threshold, the object is detected
to be sliding while rotating. At that time, 6(¢) is updated by substituting it for
6(0), allowing for repeated rotation detection.

3 Experiments

3.1 Experimental Condition

To verify the effectiveness of the proposed method, grasping experiments were
conducted. The experimental environment is shown in Fig. 9. In this experiment,
the Yale OpenHand Project Model T-42 [10] was used for the underactuated
hand, the DOBOT MG400 for robotic arm, and the Intel RealSense D405 for
stereo camera. The objects used in the experiment are shown in Fig.11, and five

Fig. 9. Experimental environment

trials were performed for each object. The objects included two multi-colored
toys and four actual food items, arranged to display the xy plane as shown in
the top-left corner of Fig.11. After successfully grasping the objects, the robotic
arm followed a predefined path, simulating a situation where disturbances were
applied while lifting the object. The effectiveness of the method was evaluated
using the success rate, which represents the proportion of successful experiments
in which the object was grasped without dropping it. Additionally, for the food
items shown in Fig. 11, the number of visible damages was evaluated.
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> Toy cake Toy cupcake Sausage
z 4’1 x
‘ ,ev
x:70mm, y: 27mm, z: 45Smm X:43mm, y: 35mm, z: 43mm x:40mm, y: 18mm, z: 18mm
Potato chip Cream puff Hamburger steak

S ©

x:58mm, y: 13mm, z: 40mm x:85mm, y: 65mm, z: 80mm x:73mm, y: 15mm, z: 63mm

Fig. 10. Objects for the experiment

3.2 Experimental Results

The results are shown in Table 1. The successful grasping results are shown in
Fig. 11. From the results, all objects were grasped successfully without being

Table 1. Experimental result

Object success rate [%||number of visible damages
Toy cake 100 -
Toy cupcake 100 -
Sausage 100 0
Potato chip 80 0
Cream puff 100 0
Hamburger steak 90 0

dropped, except for the potato chips and hamburger. This is due to the ability
to adapt the grasping force according to the hardness of the object in the object
state detection during grasping. Moreover, drop detection was well performed
so as not to drop the object during the arm control. Furthermore, for the food
items, no noticeable damage was observed visually during the grasping of any
object. This suggests that the object deformation and hand occlusion detection
in the object state detection were effective in preventing damage to the items.
Next, consider the failed attempts with the hamburger and potato chips. The
examples of failure scenarios are shown in Fig.12. In Fig.12(a), with the potato
chips, the object’s posture changes during the grasping process. This is the factor
that caused the failure of grasping the object due to insufficient force applied to
the object. Therefore, it seems necessary to improve the method by observing
the posture of the object during the grasp. Additionally, it is necessary to add
control that performs a re-grasp if the force is not effectively added to the object.
In Fig. 12(b), with the hamburger, the object slips and drops during the
lifting process. The hamburger was covered with a fatty layer, making it slippery,
and it had some elasticity. The grasp was made near the fingertips, resulting in a
small contact area. Due to the physical properties of the hamburger, the grasping
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hiamburgensteaky
T

Fig. 11. Examples of successful grasps for objects

Fig. 12. Examples of failure in grasping
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force was not sufficiently applied, causing the object to slip and fall. Therefore,
in the future, controlling the grasping point by considering the direction and
magnitude of the force applied to the object will help for a more stable grasp.
Additionally, there was also failure with toy cupcake, as shown in Fig.12(c).
Although it did not fall, it seems to be in a state where it was not effectively
grasped, almost leading to a drop. This indicates that, despite the underactuated
hand having characteristics that allow it to conform to the object, it was un-
able to fully utilize those conforming capabilities. Therefore, it seems necessary
to consider the deformation of the underactuated hand and calculate a grasp-
ing position that can conform to the shape of the object, enabling more stable

grasping.

4 Conclusion

In this study, we proposed an visual feedback control method for grasping objects
using an underactuated hand and a stereo camera. The proposed method enables
the grasping of objects with various stiffness without using any internal sensors
or attaching markers to the objects. To prevent excessive grasping force, we cal-
culated the movements of the hand and the object, object deformation, and the
occlusion of the hand. Additionally, during the lifting process by a robotic arm,
object slippage was detected. In experiments, we successfully grasped objects
without dropping them, except for potato chips and hamburgers. Furthermore,
for food items, we confirmed that the objects could be grasped without causing
visible damage.

In future work, we aim to improve the system by calculating the object’s
posture during grasping. This will allow regrasping when no force is applied
to the object. Additionally, we plan to calculate the optimal grasping position
by considering the forces applied to the object and the underactuated hand’s
adaptability to the object. This will enhance the stability of object grasping.
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