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Abstract: In this study, we propose a method for automatically generating sewing patterns from a single garment image using
deep learning. Sewing patterns serve as the design blueprints of clothing. In garment production, predicting and designing
sewing patterns from fashion sketches requires extensive expertise and is considered highly challenging. Automating this
process is expected to improve both the efficiency and accuracy of garment manufacturing. Most existing studies focus on
predicting and generating sewing patterns for entire garments. However, this approach tends to reduce shape fidelity for smaller
and more diverse parts, such as collars and sleeves. To address this issue, our method divides a garment image into three major
components— bodice, sleeve, and collar— and inputs each part into a dedicated sewing pattern generation model. This enables
faithful reproduction of garment shapes, even for parts with complex structures.
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(a) Clothing image (b) Part mask image

Fig.1 Image used for segmenting clothing
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(a) Bodice (b) Sleeve

(c) Collar
Fig.2 An example of a dataset

Table 1 Type of bodice and number of images

Bodice Type Total Images
A-line 66
Panel Line 62

Box Line 68
Waist Seam (Gathered Skirt) 70
Waist Seam (Straight Skirt) 65
Waist Seam (Trapezoid Skirt) 61
Total Images 392
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Table 2 Type of sleeves and number of images

Sleeve Type Total Images

Long Sleeve — Straight 60

Long Sleeve — Tight 60

Long Sleeve — Puff 60

Long Sleeve — Flare 60

Short Sleeve — Straight 60

Short Sleeve — Puft 60

Short Sleeve — Flare 60

Total Images 420

(a) Input (b) Part mask image
(c) Bodice (d) Sleeve (e) Collar

Fig.3 Segmentation results
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Table 3 Type of collars, number of shape variations, and number of images

Collar Type Number of Shape Variations Total Images
Shirt Collar 4 100

Stand Collar 3 80

Sailor Collar 4 93

Flat Collar 4 91

Shirt Collar with Band 2 98

Total Images 462

(a) Input (b) Output (c) Ground truth (a) Input (b) Output (c) Ground truth

Fig. 4 Bodice pattern generation results

(a) Input (b) Output (c) Ground truth

Fig. 5 Sleeve pattern generation results
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Fig. 6 Collar pattern generation results 1 (shirt collar)

(a) Input (b) Output (c) Ground truth

Fig.7 Collar pattern generation results 2 (flat collar)
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Table 4 IoU Results For Bodice Types

Bodice Type Mean IoU
Bodice Skirt 0.649
Bodice Dress 0.455
Average 0.552

Table 5 IoU Results For Sleeve Types

Sleeve Type Mean IoU
Short Sleeve 0.660
Long Sleeve 0.697
Average 0.678
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