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Abstract: This study proposes a method for accurately estimating the mixing ratio of V. harveyi and soil bacteria in inverted
microscope videos. Motility features were extracted using the Farneback method as 24 descriptors representing velocity,
direction, diversity, frequency, and spatial patterns. An XGBoost model achieved 85.7% accuracy, significantly outperforming
CNN and RNN approaches. The feature importance analysis highlighted high-frequency motion and median velocity as the
most influential predictors.

1. 緒言
近年，人口増加や食習慣の変化に伴い，世界の食料
需要は急速に拡大している．国際連合食糧農業機関
（FAO）の推計によれば，2050年には世界人口は約 93
億人に達すると予測されており，その需要を満たすた
めには食料生産量を約 60%増加させる必要がある [1]．
しかしながら，陸上における畜産生産は温室効果ガス
排出やバーチャルウォーターの過剰消費といった持続
可能性の課題を抱えており，一方で海洋資源も乱獲や
環境変動による圧力にさらされている．このような状
況下において，水産養殖は将来の食料安全保障を確保
するための重要な手段として注目を集めているが，養
殖現場は病原性細菌による感染症に極めて脆弱であり，
気候変動によって新興病原菌のリスクがさらに増大し
ている．この課題に対応するため，他の細菌の増殖を
抑える働きを持つ拮抗細菌の迅速な検出と選別を可能
にするロボット支援型顕微鏡解析および自動細胞操作
技術が有望視されている．

V. harveyiは海洋環境に広く分布し，養殖水産物に深
刻な被害を与える代表的な病原菌である．これに対し
て，特定の環境細菌は病原細菌の増殖を抑制する拮抗
作用を有する可能性がある．近年，マイクロドロップ
レット（MD）を用いた細胞相互作用解析が細菌スク
リーニングにおいて注目されており，閉鎖型 MD内で
の共培養により代謝物や拮抗効果を評価することが可
能となっている．しかし，従来法では個々の MDを精
密にハンドリングし，選択的に単離することは困難で
あり，さらに病原菌の蛍光標識にはゲノム編集が必要
であるため，全ての菌種に適用できるわけではない．
Murakamiらの研究 [2]では，外部からのアクセスを可
能とする開放型 MD アレイデバイスが開発され，顕
微鏡観察・培養・選択的ピッキングの一体化が実現さ
れた．加えて，これらのデバイスをロボットマニピュ
レーターや自動ステージと統合することで，画像解析

結果に基づく全自動かつリアルタイムでの細胞分類・
選択・採取が可能となる．
現在，我々は平面基板上に固定化された MDを用い
た細胞相互作用ベースのスクリーニングシステムを開
発している．本システムにおいては，V. harveyiと環境
細菌を共培養し，拮抗作用を有する菌株をスクリーニ
ングする．ここで我々は，V. harveyiが環境細菌と比較
して非常に高い運動性を有することを見出した．本研
究では，混合細菌集団における V. harveyiの比率を予測
するための画像ベースの解析ワークフローを提案する．
動画から複数の細菌運動特徴量を抽出し，勾配ブース
ティング決定木アルゴリズムである XGBoost（Extreme
Gradient Boosting）[3]を用いて混合比率を高精度に推
定する．将来的には，本解析手法を倒立顕微鏡・自動
ステージ・ロボットマイクロマニピュレーターを統合
した MDベースのスクリーニングシステムに実装し，
顕微鏡観察下での拮抗細菌のリアルタイム自動分類・
選択・採取を可能にする予定である．安定した画像解
析とロボット操作制御を組み合わせることで，本シス
テムは水産養殖における迅速な病原菌制御および研究
環境における効率的な菌株採取を実現することが可能
になると考えられる．
2. 関連研究
近年，細胞や微生物の検出から選別，ピッキングに
至るまでをロボットにより自動化する技術が急速に発
展している．Wangら [4]の研究では，マイクロ流体デ
バイスと高精度なロボットマニピュレーターを統合し
たマイクロ流体ロボットを開発し，顕微鏡画像解析に
基づいて目的細胞の自動検出，位置決め，吸引回収ま
でを一連の流れとして実現した．このシステムは，単
一細胞レベルでの精密な操作を可能とし，大規模な細
胞スクリーニングおよび機能解析における再現性とス
ループットを向上させつつ，労力の削減に寄与してい
る．特に，彼らの研究は，マイクロ流体チップ上での



細胞操作とロボットアーム制御をリアルタイムに連携
させることで，従来は人手に依存していたマイクロマ
ニピュレーション作業の自動化を可能にした．
さらに，細胞認識精度の向上を目的に，深層学習を
基盤とした手法も報告されている．Rolda ら [5] の研
究では，深層学習を基盤とした自動マイクロマニピュ
レーションプラットフォームを提案し，顕微鏡画像内
における高精度な細胞検出をロボットアーム制御と直
接結合することで，自動選択およびピッキングを実現
した．画像認識とロボット制御の緊密な統合により，
ノイズや形態変動に対するロバスト性を確保しつつ，
実験スループットを向上させている．また，訓練デー
タによる認識精度の最適化と，ロボットマニピュレー
ターの運動制御アルゴリズムの改良により，ピッキン
グ成功率の向上が報告されている．これらの先行研究
は，顕微鏡観察，画像解析，ロボット操作を一体化さ
せた自動化システムが，微生物スクリーニングや細胞
選別工程の効率化において極めて有用であることを示
している．
以上より，本研究はこの技術的潮流を踏まえ，倒
立顕微鏡で取得した動画像から菌の運動を解析し，
V. harveyiと環境菌の混合比率を推定する手法を開発し
た．本解析手法は，顕微鏡・自動ステージ・マイクロ
マニピュレーターから構成されるロボットプラット
フォームへの統合を最終的な目標とし，拮抗細菌のリ
アルタイムかつ完全自動の分類・選択・回収を可能に
することを目指す．
3. 提案手法
3.1 手法概要
本研究では，個々の細胞のセグメンテーションやト
ラッキングを必要とせず，顕微鏡動画像での運動情報
のみから V. harveyiと環境細菌の混合比率を推定する分
類フレームワークを提案する．本手法は，(1)倒立顕微
鏡を用いた細菌の運動動画の取得，(2)動画からの運動
特徴量の抽出，(3)抽出した特徴量を用いた XGBoost[3]
モデルによる学習・分類の大きく三つの主要段階から
構成される．本手法はゲノム編集や複雑な前処理を必
要とせず，将来的には水産養殖および研究環境におい
て，リアルタイムでの細菌分類と自動ピッキングを可
能とする自動化システムへの応用が期待される．
3.2 動画取得およびデータセット準備
細菌の運動動画は，実験室環境下において倒立顕微
鏡を用いて取得する．試料は， V. harveyiと環境細菌
の混合比を 10:0から 0:10まで 0.5刻み変化させた合計
21条件を用意する．各条件に対して，動画は 9 fps，1
本あたり 27フレームの動画像を撮影する．解像度は
1920 × 1200 pixelとする．さらに，細菌分布の空間的配
置の多様性を確保するため，各条件について観察位置
を変化させながら 10回の撮影を行う．
3.3 運動特徴量の抽出
取得した動画像は，1920 × 1200 pixel の元画像を

640 × 600 pixelの 6領域に分割し，1動画あたり 6つの
スタック画像として扱う．この分割により，Fig. 1に示
すような動画像が得られ，局所的な運動解析が可能と
なるとともに，学習データの増加が可能となる．
運動の抽出には Farneback 法 [6] による稠密オプ
ティカルフロー [7] を利用する．Farneback 法 [6] で
は，各 pixel 位置 (𝑥, 𝑦) における局所的な輝度パター

Fig. 1 混合比 5:5 におけ
る元画像

Fig. 2 混合比 5:5 におけ
る各画素の速度ベクトル
の大きさ

ンを二次多項式で近似し，連続するフレーム間に
おけるこの多項式表現の変化を用いてフロー場
𝒗(𝑥, 𝑦) = (𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) を推定する．この推定は，フ
レーム間の輝度一貫性の仮定に基づき，次式で表さ
れる．

𝐼 (𝑥 + 𝑢, 𝑦 + 𝑣, 𝑡 + 1) ≈ 𝐼 (𝑥, 𝑦, 𝑡) ⇒ 𝐴 · 𝒅 ≈ 𝒃 (1)

ここで，𝒅 = (𝑢, 𝑣)𝑇 は変位ベクトル，𝐴は局所な画像勾
配行列，𝒃 は時間的勾配に基づく項である．Farneback
法 [6]は，この局所推定をガウシアンピラミッド構造上
で多段階に行い，スケールの異なる動きを安定的に検
出する．
得られたフロー場から，速度統計量，方向統計量，
運動多様性指標，周波数領域特徴量，空間勾配エネル
ギー指標，局所運動パターン指標の 6つのカテゴリー
に分類される計 24 個の特徴量を算出する．これらの
特徴量は，細菌群の運動の大きさ，方向性，エントロ
ピー，運動の多様性，微細運動と大域運動の割合，局
所的な集団運動や回転運動の存在といった動態的特性
を包括的に捉えることを目的として選定される．
すべての特徴量は分類前に平均 0，分散 1に正規化
する．データセットは各条件につき 50データを学習に
使用し，残りのデータを検証用およびテスト用に分割
する．
3.3.1 速度統計量
速度統計量は，細菌の運動性および速度分布を表す
基本的な指標である．本手法では，フロー場における
速度ベクトルの大きさの平均値，標準偏差，中央値を
算出するとともに，大きさの順位に基づき上位 25%，
10%，5%，1%に属する画素に対する平均速度を算出す
る．これらの指標により，全体の運動が小さい場合で
あっても，局所的に高い運動性を有する領域を検出す
ることが可能となる．Fig. 2に各画素の速度ベクトルの
大きさの画像を示す．
さらに，活発に動く領域の空間的広がりを評価する
ために，動きを伴う画素の割合を算出する．この指標
は，フレーム 𝑡と 𝑡 + 1の間における運動の大きさを 𝑚𝑡

𝑖 𝑗

としたとき，しきい値 𝜏𝑡 を以下の式で決定する．
𝜏𝑡 = median(𝑚𝑡

𝑖 𝑗 ) + 1.5 × MAD(𝑚𝑡
𝑖 𝑗 ) (2)

ここで，MAD（Median Absolute Deviation）は，外れ値
に対して頑健な統計量である中央値絶対偏差を表す．
次に，しきい値を超える画素の割合 𝑟 𝑡 は次式で与え



Fig. 3 混合比 5:5 におけ
る移動画素のマスク画像

Fig. 4 速度の方向と大き
さを表す HSVカラー可視
化図

られる．
𝑟 𝑡 =

1
𝐻𝑊

𝐻∑
𝑖=1

𝑊∑
𝑗=1

{
1, 𝑚𝑡

𝑖 𝑗 > 𝜏𝑡

0, otherwise
(3)

最後に，全フレームについて，これらの割合の平均
値を求め，動きを伴う画素の割合を算出する．

Proportion of moving pixels =
1

𝑇 − 1

𝑇−1∑
𝑡=1

𝑟 𝑡 (4)

この指標は，単に速度の大きさを平均するのではな
く，「しきい値を超える速い動きがどの程度の割合で空
間的に存在するか」を評価するものであり，局所的な
高運動性菌群の存在を捉える上で有効である．Fig. 3
に，濃度比 5:5の動いている画素のマスク画像を示す．
3.3.2 方向統計量
方向統計量は，細菌の運動方向の特性を表す指標で
ある．本手法では，速度ベクトルの方向角に基づく集
中度の平均値および標準偏差を算出し，運動の特定の
方向への偏りを表す方向性運動，あるいは特定の方向
への偏りのなさを表す等方性運動を評価する．集中度
が高い場合は秩序的な運動が支配的であり，集中度が
低い場合は多方向への複雑な運動を意味する．
3.3.3 運動多様性指標
運動多様性指標は，運動パターンの複雑さや多様性
を評価する．本手法では，速度ベクトル方向のエント
ロピーの平均値と標準偏差を算出する．エントロピー
が高い場合は多様な方向や速度が混在していることを
示し，低い場合は一様で秩序的な運動を示す．これに
より，細菌の運動パターンを単調型と多様型に分類す
ることが可能となる．Fig. 4に速度の方向と大きさを表
す HSVカラー可視化図を示し，Fig. 5に混合比 5:5に
おける角度分布の極座標ヒストグラムを示す．
3.3.4 周波数領域特徴量
周波数領域特徴量は，フロー場のパワースペクトル
解析に基づき，低周波成分と高周波成分の比率を計算
することで得られる．本手法では，高速フーリエ変換
（FFT）を適用し，高周波成分比の平均値と標準偏差を
特徴量とする．比率が高い場合は微細で急激な運動を
示し，比率が低い場合は滑らかで大域的な運動を示す．
この特徴は，局所的な小刻みな運動と全体的な滑らか
な運動のバランスを定量化するのに有効である．Fig. 6
は，差分画像に対する FFT対数パワースペクトルを示
し，低周波成分と高周波成分を分離するカットオフ円

Fig. 5 混合比 5:5 におけ
る角度分布の極座標ヒス
トグラム

Fig. 6 混合比 5:5 におけ
る差分画像の FFT 対数パ
ワースペクトルとカット
オフ円

Fig. 7 混合比 5:5 におけ
る発散マップ

Fig. 8 混合比 5:5 におけ
る渦度マップ

を描いている．
3.3.5 空間勾配および自己相関指標
空間勾配および自己相関指標は，速度場における局
所的な強度変化や空間的パターンの連続性を評価する．
本手法では，空間自己相関の平均値と標準偏差を算出
し，隣接領域間における運動パターンの類似性を評価
する．自己相関が高い場合は連続的な運動が支配的で
あり，低い場合は局所的変動が顕著であることを示す．
3.3.6 局所運動パターン指標
局所運動パターン指標は，細菌の局所的な運動構造
を捉えるものである．本手法では，発散の平均値と標
準偏差を計算し，局所的な収縮や拡散の度合いを評価
する．発散が正の場合は局所的な拡散的運動を，負の
場合は局所的な収束的運動を示す．Fig. 7に濃度比 5:5
の発散マップを示す．
また，局所的な回転運動の強さと分布を評価するた
めに，渦度の平均値と標準偏差を算出する．渦度が大
きい場合は回転を伴う運動を示し，小さい場合は主に
直線的または拡散的な運動を示す．Fig. 8に濃度比 5:5
の渦度マップを示す．
さらに，フロー場をしきい値処理して得られた運動
領域を連結成分解析し，連結成分の数，領域面積の平
均値，標準偏差および成分面積 95パーセンタイル値を
算出する．これにより，細菌が孤立しているのか広範
に分布しているのかを定量的に把握できる．
3.4 モデル構造および学習
本研究では，前節で示したオプティカルフロー解
析 [7] から抽出した 6 カテゴリ計 24 種類の特徴量



を入力とし，勾配ブースティング決定木モデルであ
る XGBoost[3] を用いて細菌の混合比率を予測する．
XGBoost[3]は，逐次的に決定木のアンサンブルを構築
し，各決定木が前の木の誤差を補正することで，非線
形な関係や特徴量間の相互作用を高精度にモデル化す
ることを可能にする．また，木構造ベースのモデルの
特性により，特徴量のスケーリングや正規化などの事
前処理を必要とせず，多様な統計量・分布指標・空間
特性を同一空間で扱うことができる．
入力ベクトルは，前節で示した速度統計量・方向統
計量・運動多様性指標・周波数領域特徴量・空間勾配
および自己相関指標・局所運動パターン指標の 6つの
カテゴリから構成される．各カテゴリは細菌の運動性
の異なる側面を表しており，それらを組み合わせるこ
とで，単一の指標では捉えられない複雑な運動パター
ンを高次元で表現することが可能となる．
学習データは，各条件に対して位置を変化させて撮
影した 10回の動画から各条件ごとに 50データを訓練
用として使用する．モデルのハイパーパラメータは，
過学習を抑制するために木の最大深さ，学習率，木の
本数などをグリッドサーチおよび交差検証を通じて最
適化する．モデル性能は独立したテストデータセット
に基づき，accuracy，recallおよび F1スコアを評価指標
として評価する．
4. 実験
4.1 実験概要
本研究では，倒立顕微鏡で収集したデータセットを
用いて，V. harveyiと環境細菌の混合比率を分類した．
分類には， 24種類の運動特徴量を用い，その分類精度
を評価した．また，最適なハイパーパラメータも決定
した．さらに，CNN[8]（Convolutional Neural Network）
および RNN[9]（Recurrent Neural Network）との精度比
較，ならびに重要度の高い特徴のみを用いた時との精
度比較を行った．
4.2 サンプル調製
本研究で使用した V. harveyiは小祝が準備した．環境
細菌は，中央大学後楽園キャンパスの花壇の土から採
取してフィルター濾過により精製した．どちらの細菌
も， −80 ◦Cで保存し，そのストックから少量を培地に
移して 25 ◦Cで一晩振盪培養した．その後，細胞数を
カウントして，どちらの細菌も 5 × 108 cell/mlになるよ
うに希釈した．これらの細菌を目的の比率で混合し，
ガラススライドにのせてプレパラートを作製し，倒立
顕微鏡 (Nikon Ti)で観察し，CCDカメラで動画を撮影・
記録した．
4.3 データセット

3.2 節で述べたようにデータを取得し，各動画を
640 × 600 pixelの 6領域に分割して，1動画あたり 6つ
のスタック画像とし，計 1,260データをデータセット
とした．そのうち各条件につき 50データをランダムに
学習用に抽出し，残りをテストデータセットとして使
用した．
4.4 ハイパーパラメータ設定
本研究では，XGBoost[3]モデルにおける複数のハイ
パーパラメータを網羅的に探索し，汎化性能を最大化
する設定を求めた．探索対象としたパラメータは，木
の最大深さ（5, 7），学習率（0.05, 0.1），木の本数（400,
800），サブサンプリング率（0.8, 1.0），特徴量サブサン

Fig. 9 24特徴量を用いた分類結果

Fig. 10 24特徴量を用いた Accuracyの結果

プリング率（0.8, 1.0），L2正則化強度（1.0, 3.0），およ
び子ノード作成の最小重み（1.0, 3.0）である．これら
全ての組み合わせに対して 5分割交差検証を行い，最
も高い Accuracy を示した設定を採用した．最適設定
は，特徴量サブサンプリング率 80%，学習率 0.05，木
の最大深さ 5，子ノード最小重み 1.0，木の本数 800本，
L2正則化強度 3.0であった．この設定により，過学習
を効果的に抑制しつつ，複雑な特徴量間の相互作用を
高精度に捉えることが可能となった．
4.5 24特徴量を用いた混合比の分類

4.4節で決定した最適ハイパーパラメータを適用し，
抽出した 24種類の運動特徴量に基づく V. harveyiと環
境細菌の混合比率分類を行った．分類結果を Fig. 9に
示す．全体の分類精度は 85.7%となり，比較的高い精
度で混合比率を識別できることが確認された．Fig. 10，
Fig. 11，Fig. 12に，それぞれ Accuracy，Recall，F1スコ
アの結果を示す．これらの結果から，V. harveyiまたは
環境細菌の濃度が極端に偏った条件では高い分類性能
が得られる一方，両者の混合比率が近い条件では精度
が低下する傾向が見られた．
また，Permutation importanceの分析結果を Fig. 13に
示す．Fig. 13より，モデルの予測精度に最も大きく寄
与した特徴量は highfreq ratio mean と mag p50 である
ことがわかる． highfreq ratio mean は高周波成分の平
均比率を示す指標であり，運動や形態変化に関連する
微細なパターンを反映している．一方 mag p50は速度
ベクトルの大きさの中央値であり，観察対象全体の運
動スケールを表す．これらの特徴量が上位に位置して
いることから，モデルは主に運動の周波数特性と速度
分布の代表値に基づいて分類を行っていると考えら



Fig. 11 24特徴量を用いた Recallの結果

Fig. 12 24特徴量を用いた F1スコアの結果

Fig. 13 24特徴量の Permutation Importanceの結果

れる．
また，ang concentration mean，comp count meanなど
の特徴量も中程度の重要度を示した．それらの特徴量
は，運動の方向集中度や領域の数・面積のばらつきと
いった形態的・空間的特徴が補助的に分類精度向上に
寄与していると考えられる．
一方で，mag p75や vort stdなどの一部の特徴量は重
要度がほぼゼロであり，本モデルにおいて寄与が限定
的であると考えられる．これらの特徴量は，他の特徴
量と高い相関を持つか，本分類対象に対して情報量が
少ない可能性があるため，特徴選択やモデル軽量化に
おける除外候補として検討できる．
総じて，以上の結果は，モデルが分類において主に
運動の周波数特性および速度分布を主要な判断基準と
して活用しつつ，形態的および空間的な特徴を補助的
要素として組み合わせていることを示しており，対象
の動態把握における多面的な特徴抽出の有効性を確認
できた．
4.6 CNNおよび RNNとの比較
抽出した運動特徴量を用いて構築した CNN[8]およ
び RNN[9]との分類性能比較を行った．得られた分類
精度は，CNN[8]が 20.5%，RNN[9]が 14.3%であり，い
ずれも高い性能を示すことはできなかった．表 1に各
モデルの分類精度を示す．
この結果の主な要因は，データセット規模の不足で

Table 1 XGBoost，CNN，RNNによる分類精度の比較
Model Accuracy
XGBoost (24 features) 0.857
CNN 0.205
RNN 0.143

ある．本研究で用いたデータセットは比較的小規模で
あり，深層学習モデルが十分に特徴量表現を学習す
るには不十分であった可能性が高い．特に CNN[8]や
RNN[9]といった多層構造を持つモデルは，小規模デー
タセットでは過学習や重み更新の不安定性を招きやす
く，結果として汎化性能が低下する傾向がある．
さらに，CNN[8]は空間的特徴抽出に適しているもの
の，本データセットは主に運動関連情報に特徴づけら
れており，単一フレームから抽出される空間特徴だけ
では十分な識別能力を発揮できなかった可能性がある．
一方で，RNN[9]は時系列依存性の学習に優れている
が，入力フレーム数や系列長が限られている場合，動
きのパターンを十分に捉えることができなかったと考
えられる．
総じて，本研究におけるデータセット規模を踏まえ
ると，比較的小規模なデータセットでも安定した学習
結果を得られる XGBoost[3]が，深層学習手法と比較し
てより有効であると考えられる．
4.7 最も重要な特徴量のみを用いた場合との

比較
本節では，Permutation Importanceの分析結果により
重要度が高いと判定された特徴量 highfreq ratio mean
および mag p50 のみを用いた場合の分類性能を評価
した．実験構成は，(1) highfreq ratio meanのみを使用，
(2) mag p50のみを使用，(3)両者を組み合わせて使用，
の 3種類とした．また，比較のため，全 24特徴量を用
いた場合の分類結果も併せて示す．結果を表 2に，3
つのケースの混同行列を Fig. 14に示す．
結果より，上位特徴量のみを単独あるいは組み合わ
せて使用した場合，全特徴量を使用した場合と比較し
て分類精度は大幅に低下した． highfreq ratio mean お
よび mag p50は予測過程において高い影響力を持つこ
とが確認されたものの，それら単独では混合比を高精
度に分類するための識別能力は不十分であった．両者
を併用しても精度は 21%にとどまり，補完的特徴量の
導入が不可欠であることが明らかとなった．
加えて，この傾向は本手法における特徴量の多様性
の重要性を示している．周波数領域特性や速度分布特
性が分類の主要因である一方，方向集中度，連結成分
数，成分面積変動といった形態的・空間的特徴が補完
的役割を果たす．また，限られた特徴量のみに依存す
ることが分類性能を著しく制限することを明らかにし，
混合比率分類を実現するためには複数特徴量の統合的
利用の必要性を再確認する結果となった．
5. 結言
本研究では，倒立顕微鏡で撮影した細菌運動動画像
から抽出した 24種類の運動特徴量を用いて，V. harveyi
と環境細菌の混合比率を分類する手法を提案した．実
験により，全特徴量を用いた場合の分類精度は 85.7%
を達成し，少量データ環境において XGBoost[3]モデル
の有効性が確認された．また，CNN[8]および RNN[9]



(a) highfreq ratio meanのみ
を使用した結果

(b) mag p50 のみを使用し
た結果

(c)両特徴を用いた結果
Fig. 14 最も重要な特徴量を用いた場合の結果

Table 2 全特徴量使用時と最重要特徴量のみ使用時の
分類精度比較
Case Features Used Accuracy
all features 全 24特徴量 0.857
highfreq only highfreq ratio mean 0.148
mag p50 only mag p50 0.071
both hf mag highfreq ratio mean, mag p50 0.210

モデルとの比較実験では，深層学習モデルはいずれも
十分な学習が行えず精度が低下する傾向が見られた．
さらに，Permutation Importance の結果，高周波成分の
平均比率および速度ベクトルの大きさの中央値が分類
性能に最も寄与していることが明らかになり，モデル
がこれらの情報を主要な判断基準として活用している
ことが示唆された．
今後は，本手法を倒立顕微鏡・自動ステージ・マイ
クロマニピュレーターから構成されるロボットシステ
ムに統合し，顕微鏡観察下における細胞や細菌のリア
ルタイム自動分類および選択を実現することを目指す．
これにより，水産養殖における迅速な病原菌制御や研
究環境における菌株取得の効率化の実現を目指す．
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