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In this paper, we propose a flexible device control
method using personalized command spaces that func-
tion as buttons on a virtual remote control that follows
the user. By performing two different gestures in each
space, the users can control various devices in a room.
This system is implemented through multiple cameras
and 3D human keypoint tracking. We experimentally
evaluated the influence of command spaces arrange-
ment on gesture recognition and determined the recog-
nition accuracies for different gestures in each com-
mand space. The system demonstrated high usability,
with even inexperienced users achieving high gesture
recognition accuracy.
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1 . Introduction

Daily life is beset by an increasing number of devices
and appliances, each with its own remote control and op-
erating method. Even in industrial environments, such as
factories, workers may be in charge of multiple devices
that need to be controlled and managed simultaneously.
Such situations can increase the cognitive burden on users
who are required to keep track of multiple remote controls
and operation methods. A more intuitive and, deviceless
operational method has the potential to reduce the com-
plexity of operations. This study proposes the construc-
tion of an “intelligent room” environment that aims to sim-
plify device operation using intuitive gestures without the
use of additional devices. Our room consists of a space
in which multiple cameras are fixed to enable 3D percep-
tion via triangulation. We build a virtual remote control
with 3D buttons called “command spaces” that can be ac-
tivated via simple hand gestures. By tracking the users’
keypoints in 3D, these command spaces can follow the user
enabling device-free operation from anywhere in the intel-
ligent room. By using two different gestures and six com-
mand spaces, 12 different operations can be performed, in

contrast to previous methods that allowed only one or two
operations. In this paper, we describe the design and sys-
tem integration involved in the construction of this Intelli-
gent Room and command spaces.

2 . Related Works

The simplest way to make a room “intelligent” and en-
able control of multiple devices is to use smart speakers [1]
such as Alexa and Google Nest. By connecting them to the
target devices, operation can be performed via voice com-
mands. However, this approach has several disadvantages.
For instance, it cannot be used in noisy environments or by
multiple people in the same environment. Voice recogni-
tion also has a limited operational range, making this ap-
proach spatially restricted.

In contrast, some systems use sensors to detect visual or
motion-based gestures, enabling flexible and intuitive de-
vice operations. For example, in [2], eye-gaze direction is
used to control electronic devices. However, such systems
require a clear line of sight to the user’s eyes. Moreover,
eye-gaze direction estimation is sometimes inaccurate and
can lead to accidental operations. In [3], gestures are cal-
culated using two cameras and forearm inclination correc-
tion. However, high-accuracy hand-pose recognition re-
quires multiple camera images in which the system can be
observed clearly.

In comparison, the systems presented in [4, 5] employ
cameras to detect hand-waving gestures through skin color
segmentation. Such gesture-based methods are superior to
eye-gaze detection. However, their reliance on color infor-
mation results in poor performance under varying lighting
conditions, even when the HSV color space is used.

Instead of using arbitrary cues such as eye-gaze direction
or skin color, it is now possible to accurately detect human
keypoints using deep learning methods such as those de-
scribed in [6]. The authors in [7] took advantage of this
and triangulated 3D human keypoints. They implemented
a pointing-based appliance control system. However, the
drawback of this system is that only one operation can be
performed because this method can only “select” an appli-
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Fig. 1. Conceptual diagram of the system.

Fig. 2. Bird’s eye view of the environment.

ance. Even simple appliances, such as a TV, have multiple
functions and require a more flexible approach.

In this study, we implement a new method inspired by
the work of [8, 9], where “command spaces,” which func-
tion as buttons on a virtual remote control, are used to en-
able multiple commands for device operation. By defin-
ing a person-based coordinate system and tracking users’
3D keypoints, our proposed method permits the command
spaces to follow the user as required. This also allows si-
multaneous operation by multiple users, as each user can
have their own control method.

3 . Methods

3.1. Overview of the Entire Proposed Method
In our system, the operation is performed using two sim-

ple gestures, in dedicated command spaces consisting of
six cubes positioned around the operator based on a relative
coordinate system, as shown in Fig. 1. The operator can
perform 12 different operations by executing either of the
two gestures in each command space. The environment for
the proposed method is illustrated in Fig. 2. Cameras are
installed in the four corners of the ceiling in a space with
multiple home appliances and furniture to prevent the dete-

Fig. 3. Outline of the proposed system.

Fig. 4. Captured images.

rioration of recognition accuracy due to occlusion. When
the epipolar line error is minimal between the first and sub-
sequent camera detections of a skeletal, those cameras are
considered a valid pair for triangulation.

The system outline is depicted in Fig. 3. First, the oper-
ator is identified and tracked after a “start gesture” is rec-
ognized. A relative coordinate system is constructed using
the operator’s skeletal points. Six command spaces are set
based on this relative coordinate system, fixed to the user’s
body. Finally, a command linked to a particular gesture and
command space is executed. In this study, it is assumed
that the operator is standing still while performing the ges-
ture. Operator 3D keypoint detection and gesture recog-
nition are performed using images captured from cameras
installed on the ceiling of a space, as shown in Fig. 4.
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Fig. 5. Detection of skeletal points.

3.2. Identification of the Operator
In this study, skeletal point information is obtained from

four camera images using OpenPose [6], as shown in
Fig. 5.

The operator is identified when their elbow is raised
higher than their chest. First, using the images acquired
from the four cameras, candidate 2D coordinates of skele-
tal points at the elbow and center of the chest of each person
are obtained. Next, using the 2D coordinates of skeletal
point candidates that satisfy the epipolar constraint, the 3D
coordinates of the elbow (𝑥𝑒, 𝑦𝑒, 𝑧𝑒) and chest (𝑥𝑐, 𝑦𝑐, 𝑧𝑐) are
calculated using the principles of stereo vision [10]. When
𝑧𝑒 > 𝑧𝑐 is maintained for several frames, the system recog-
nizes the gesture as the start of operation, and identifies the
person as the operator. This ensures that operation is per-
formed intentionally by the person who executed the start
gesture, and not accidentally.

3.3. Construction of Body Relative Coordinate
System

3.3.1. Overview
The body-relative coordinate system is a coordinate sys-

tem constructed relative to the operator’s body. This co-
ordinate system is defined with the operator’s body as its
origin. There are two advantages to establishing this coor-
dinate system:

• Operable at any time, regardless of the operator’s po-
sition.

• Easy to understand the location of the command space
using the operator’s body as a reference point, even
though it is invisible.

3.3.2. Construction of the Body Relative Coordinate
System

The body-relative coordinate system is defined using the
3D coordinates of three skeletal points obtainable from
OpenPose: the chest, and the left and right shoulders. As

Fig. 6. Body-relative coordinates.

Table 1. 3D coordinates of the shoulders and chest.

Skeletal point 3D coordinate
Left shoulder (𝑥1, 𝑦1, 𝑧1)
Right shoulder (𝑥2, 𝑦2, 𝑧2)

Chest (𝑥𝑐, 𝑦𝑐, 𝑧𝑐)

Fig. 7. Relationship between the two coordinate systems.

illustrated in Fig. 6, the chest serves as the origin of the
coordinate system. First, the 𝑦-axis is set as a straight
line extending from the left shoulder to the right shoulder,
translating it through the origin. The 𝑧-axis is then aligned
with the direction of the world coordinate system, and the
𝑥-axis is defined as the cross product of the 𝑦- and 𝑧-axes.
To ensure the 𝑦-axis remains horizontal, the difference in
z-coordinate values between the left and right shoulders is
disregarded.

The 3D coordinates of the left shoulder, right shoulder,
and chest are listed in Table 1. To facilitate understanding
of the command space location, the 𝑦-axis of the relative
coordinate system is adjusted to be parallel to the 𝑥𝑦-plane
of the world coordinate system. Therefore, the values of
𝑧 = 1 and 𝑧2 should be equal to 𝑧𝑐. The relationship be-
tween the world coordinate system (𝑥, 𝑦, 𝑧) and relative co-
ordinate system (𝑥′, 𝑦′, 𝑧′) is depicted in Fig. 7, and de-
fined by Eqs. (1) and (2).

⎛
⎜
⎜
⎜
⎝

𝑥′

𝑦′

𝑧′

⎞
⎟
⎟
⎟
⎠

= R
⎛
⎜
⎜
⎜
⎝

𝑥
𝑦
𝑧

⎞
⎟
⎟
⎟
⎠

+
⎛
⎜
⎜
⎜
⎝

𝑥𝑐

𝑦𝑐

𝑧𝑐

⎞
⎟
⎟
⎟
⎠

(1)

218 Int. J. of Automation Technology Vol.19 No.3, 2025



Home Appliance Operation via 3D Keypoint Based
Gesture Detection in Body-Relative Command Spaces

Fig. 8. Conceptual diagram of command spaces.
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3.4. Gesture Recognition in Command Spaces
3.4.1. Overview of Gesture Recognition Method

This system employs command spaces, as displayed in
Fig. 8, in which commands for equipment operation are
linked to specific real-world spaces. When an operator per-
forms a gesture within a command space, the equipment
operation associated with that command space and ges-
ture combination is executed. The system recognizes two
gestures types, distinguished by elbow and wrist heights.
Thus, a total of 12 possible commands can be performed,
opposed to only one in [7].

3.4.2. Construction of Command Spaces
The command space is set up on the body-relative coor-

dinate system constructed relative to the operator. If the
gesture to initiate operation is performed with the right
hand, the command space is configured for right-hand op-
eration; if the gesture is performed with the left hand,
the command space is configured for left-hand operation.
This allows for a natural posture when performing gestures
in the command space on the side opposite the operating
hand.

3.4.3. Gesture Recognition
This study uses gestures types, as shown in Fig. 9, to en-

able two distinct operations per command space. Both ges-
tures involve holding the hand within the command space;
however, the height difference between the wrist and elbow
is significant for gesture 1 and minimal for gesture 2.

The 3D coordinates of the skeletal points of the wrist
and elbow are calculated as displayed inTable 2. When the
3D coordinates of the wrist are within a command space,
a gesture is recognized as being performed. Gesture 1 is
recognized when the condition defined by the first equation

Fig. 9. Definition of two types of gestures.

Table 2. 3D coordinates of the elbow and wrist.

Skeletal point 3D coordinate
Elbow (𝑥𝑒, 𝑦𝑒, 𝑧𝑒)
Wrist (𝑥𝑤, 𝑦𝑤, 𝑧𝑤)

of Eq. (3) is maintained across several consecutive frames.
Similarly, gesture 2 is recognized when the condition de-
fined by the second equation of Eq. (3) is sustained across
several consecutive frames. When the expression is the
third equation of Eq. (3), no gesture is recognized.

If a gesture is not recognized, but the same gesture is rec-
ognized in both the preceding and following frames, that
gesture is inferred for the intervening frame.

⎧⎪
⎨
⎪⎩

|𝑧𝑒 − 𝑧𝑤| > 𝛼 Gesture 1
|𝑧𝑒 − 𝑧𝑤| < 𝛽 Gesture 2
𝛽 ≤ |𝑧𝑒 − 𝑧𝑤| ≤ 𝛼 Unrecognized

(3)

4 . Evaluation

4.1. Overview of Evaluation
Experiments were conducted to evaluate the recogni-

tion accuracy of the proposed system. Two types of ex-
periments were performed. In each experiment, both sub-
jects familiar with the proposed method and those unfamil-
iar with it participated, resulting in four categories of ex-
perimental results. In each experiment, subjects were pre-
sented with a feedback screen generated using OpenGL,
as illustrated in Fig. 10. A color-coded command space,
dynamically-adjusted to the operator’s position, was con-
tinuously displayed. The result of each operation was indi-
cated by a change in the color of a large rectangle in front of
the screen. The operator’s wrist position was represented
by a blue circle, allowing for continuous objectivemonitor-
ing of their wrist position. To make the positional relation-
ship easier to understand for the operator to understand, the
sofa positions were represented by a combination of black
rectangles. These positions were fixed.

To evaluate the influence of command space placement
on recognition accuracy and ease of use in Experiment 1,

Int. J. of Automation Technology Vol.19 No.3, 2025 219



Yokota, M. et al.

Fig. 10. Feedback screen.

a comparative study was conducted using the three place-
ments shown in Fig. 11. In Fig. 11(a), command space is
positioned directly in front of and centered on the opera-
tor. In Figs. 11(b) and (c), the command space is placed in
front of the operator but offset slightly toward their dom-
inant hand. Specifically, the command space is shifted
to the right for right-handed operators, and to the left for
left-handed operators. Figs. 11(b) and (c) both show the
right-handed case. While the command space is planar in
Figs. 11(a) and (b), it is curved to approximate the trajec-
tory of the operator’s arm in Fig. 11(c).

In Experiment 2, we verified the gesture recognition ac-
curacy using arrangement 3, which yielded the best results
in Experiment 1. The two gesture types defined in Sec-
tion 3.4.3 were used, and the recognition accuracy was cal-
culated for each command space.

In both Experiments 1 and 2, the operation sequence
was consistent. A clockwise operation was performed us-
ing gesture 1 in each command space. After all operations
were completed with gesture 1 across all command spaces,
the process was repeated using gesture 2, following the
same clockwise order. The experimental results were eval-
uated based on the following two components:

• Probability that the wrist position is recognized as
being within the correct command space: position
recognition rate.

• Probability that the two gestures are correctly recog-
nized: gesture recognition rate.

Verbal instructions were provided to the subjects for
each operation. If the correct operation was not performed
within 5 s, the gesture recognition was considered a failure.
Each experiment began with the subjects performing a ges-
ture to start the operation, after which the experiment pro-
ceeded. The feedback screen was continuously displayed,
allowing subjects to refer to it when necessary. Subjects
mainly stood in front of the TV set, but their precise po-
sition was not specified. Two or three people, including
the subject, were present during the experiments, while the
non-subjects were seated.

(a) Arrangement 1: alignment with the front and middle of
the body

(b) Arrangement 2: displaced toward the dominant hand

(c) Arrangement 3: arc-shaped and displaced in the direction
of the dominant hand

Fig. 11. Three command space arrangements.

4.2. Experiment 1: Comparative Experiment of
Gesture Recognition Accuracy with
Different Command Space Arrangements

Experiment 1 was conducted to compare the effects of
different command space placements on position recog-
nition accuracy. Three command space arrangements, as
depicted in Fig. 11, were evaluated. No distinction was
made between gestures, and operators simply extended
their arms and positioned their wrists within the target
command space. The success rate was then calculated.

4.2.1. Experiment 1 with an Experienced Subject
A subject, who was familiar with the operation per-

formed the start gesture with their right hand and held
then positioned their hand 10 times within each command
space. Table 3 presents the success rates for the three
command space arrangements configured in three differ-
ent ways, as illustrated in Fig. 11.

The average position recognition rate was 73% for ar-
rangement 1 , 97% for arrangement 2, and 99% for arrange-
ment 3.
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Table 3. Position recognition rate for Experiment 1 with
experienced subjects [%].

Command 1 2 3 4 5 6 Average

Arrangement 1 30 100 90 20 100 100 73
Arrangement 2 90 100 100 100 100 90 97
Arrangement 3 100 98 100 95 100 100 99

Table 4. Position recognition rate for Experiment 1 with
inexperienced subjects [%].

Command 1 2 3 4 5 6 Average

Arrangement 1 16 84 96 8 72 92 61
Arrangement 2 88 88 96 60 88 96 86
Arrangement 3 68 92 92 84 96 88 87

4.2.2. Experiment 1 with Inexperienced Subjects
This experiment was conducted with five subjects un-

familiar with command space operations. Each operator,
remaining in a fixed standing position, placed their wrists
within the targeted command space. The success rates are
listed in Table 4.

The average position recognition rate was 61% for ar-
rangement 1, 86% for arrangement 2, and 87% for arrange-
ment 3.

4.3. Experiment 2: Evaluation of Gesture
Recognition Accuracy

Experiment 2 was conducted to evaluate the recognition
rates for the two gesture types within each command space.
Each gesture was performed 30 times per command space,
and the recognition rate was evaluated. This experiment
utilized the command space of the arrangement displayed
in Fig. 11(c).

4.3.1. Experiment 2 with an Experienced Subject
This experiment was conducted by an operator person

experienced with the system. The operator performed ges-
tures within each command space at the same position and
the recognition accuracy was determined, as described in
Section 4.1.

The results are summarized in Table 5. Gesture recog-
nition took approximately 1–4 s. On average, the position
recognition rates were 98% for gesture 1 and 99% for ges-
ture 2. The average recognition rates for gestures 1 and 2
were 94% and 96%, respectively.

4.3.2. Experiment 2 with Inexperienced Subjects
This experiment involved five participants who were in-

experienced with this method of operation. Each partic-
ipant performed two types of gestures, five times each,
within every command space at the same position. The
recognition rate was then described in Section 4.1.

The results are summarized in Table 6. On average, the
position recognition rates were 86% and 87% for gestures 1
and 2. The average gesture recognition rates for gestures 1
and 2 were 73% and 60%, respectively.

Table 5. Recognition rates for Experiment 1 [%].

Command 1 2 3 4 5 6 Average

Gesture 1

Gesture
recognition 100 100 90 87 93 93 94

Position
recognition 100 100 100 90 100 100 98

Gesture 2

Gesture
recognition 90 97 97 93 100 100 96

Position
recognition 100 97 100 100 100 100 99

Average

Gesture
recognition 95 99 94 90 97 97 95

Position
recognition 100 99 100 95 100 100 99

Table 6. Recognition rates for Experiment 2 with inexpe-
rienced subjects [%].

Command 1 2 3 4 5 6 Average

Gesture 1

Gesture
recognition 80 88 92 44 64 68 73

Position
recognition 80 88 96 72 92 88 86

Gesture 2

Gesture
recognition 36 60 52 56 80 76 60

Position
recognition 74 88 96 76 96 92 87

Average

Gesture
recognition 58 74 72 50 72 72 66

Position
recognition 77 88 96 74 94 90 87

5 . Discussion

This section discusses the results of the experiments.
Based on the outcomes of Experiment 1, we analyzed the
impact of command space layout on ease of operation.
Then, we used the outcomes of Experiment 2 to examine
the recognition accuracy of each gesture within each com-
mand space.

5.1. Effects of Command Space Placement
In Experiment 1, we calculated the recognition rate of

subjects’ wrist skeletal points within the command space
for three different command space arrangements, and the
results are presented in Tables 3 and 4. The average po-
sition recognition rate for placement 1 is 73% for experi-
enced operators and 61% for inexperienced operators. The
average position recognition rate for placement 2 is 97%
for experienced operators and 86% for inexperienced op-
erators. The average position recognition rate for place-
ment 3 is 99% for experienced operators and 87% for inex-
perienced operators.

The location recognition rates for the experienced op-
erator show that arrangement 1 yields the lowest values,
whereas arrangements 2 and 3 are nearly identical. This
operator is right-handed. The position recognition rate for
placement 1 is notably low for commands 1 and 4, which
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Fig. 12. Side view: manipulation of command space by
vertical movement of the wrist.

are located at the opposite end of the command space from
the dominant hand. For the inexperienced operator, the po-
sition recognition rate for arrangement 1 is also the lowest,
mirroring the result for the experienced operator, withmin-
imal difference between arrangements 2 and 3. Again, all
subjects are right-handed. The position recognition rates
for commands 1 and 4, located opposite the dominant hand,
are also particularly low for arrangement 1. However, the
position recognition rates for placements 2 and 3 exceed
80%, regardless of the operator’s experience level. There-
fore, shifting the command space toward the dominant-
hand operational accuracy.

Body movement characteristics also affected the results.
Observations of the inexperienced operator revealed that
when moving the wrist from an upper to a lower command
space, the arm often followed an arc on the zx-plane, as
presented in Fig. 12. This frequently resulted in the wrist
being positioned at the edge of the lower command space,
potentially contributing to the lower position recognition
rate. Fig. 12 shows a side view of the wrist at the edge of
the command space during vertical movement.

Comparison of the results for arrangements 2 and 3 re-
vealed further insights. The differences likely stem from
the operator movement habits. The optimal command
space arrangement may vary depending on whether the op-
erator moves their arm using the elbow or shoulder as the
fulcrum. As shown in Fig. 13, when only the elbow tip is
moved with the elbow as the fulcrum, the wrist tends to
be positioned deeper than intended within the command
space. In contrast, if the entire arm is moved with the
shoulder as the fulcrum, the wrist can be positioned cor-
rectly within the command space. Therefore, it is advis-
able to determine the command space layout based on the
physical characteristics of the operator’s movements dur-
ing operation.

5.2. Evaluation of Recognition Accuracy of Each
Gesture in Each Command Space

In Experiment 2, using arrangement 3 from Fig. 11,
we confirmed the accurate recognition of both. Table 5

(a) Overhead view: movement of a personwith the habit ofmov-
ing only the forearm

(b)Overhead view: movement of a personwith the habit ofmov-
ing only the entire arm

Fig. 13. Differences in arm movement.

presents the results for a subject with operating experience,
whileTable 6 shows the results for inexperienced subjects.

Table 5 shows that the position recognition rates for both
gestures 1 and 2 exceed 90%, indicating that the system ac-
curately identified the operator’s intended command space.
The gesture recognition rates for both gestures also sur-
passed 90%, demonstrating near-perfect accuracy for par-
ticipants with operating experience.

As presented in Table 6, the average position recogni-
tion rates for both gestures exceed 80%, even among in-
experienced operators. However, some individual com-
mand spaces, specifically commands 1 and 4, exhibit po-
sition recognition rates below 80%. This may be because
all operators are right-handed, making it relatively difficult
for them to position their wrists accurately in command
spaces located on the opposite side of their dominant hand.
The average gesture recognition rates exceed 60% for both
gestures. Interestingly, the gesture recognition rate of ges-
ture 1 is lower than that of gesture 2 for commands 4–6
in the lower row. Conversely, for gesture 2, the gesture
recognition rate is lower for commands 1–3 in the upper
row than for gesture 1. This discrepancy may be due to the
inherent difficulty in distinguishing gestures based on the
difference in height between the elbow and wrist when the
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command spaces are located above and below each other.
Adjusting the position of the elbow and wrist to match the
height of the target command space likely felt unnatural
and posed a challenge for inexperienced users. Therefore,
future work should focus on developing methods that al-
low even inexperienced users to quickly become proficient
with the operations.

In addition, during observation of the skeletal point de-
tection process, we found that the accuracy of skeletal
point recognition varied depending on the color of the sub-
ject’s clothing. Although OpenPose was employed in this
method, a more accurate skeletal point detection method
suitable for real-time processing is required. For intelligent
room to be truly usable in daily life, real-time operation
and minimization of user burden due to unintended move-
ments are crucial. OpenPose processing time, for skeletal
detection increases with the number of people in the image.
Moreover, in crowded scenes, skeletal points of nearby in-
dividuals are misidentified, and the detection results are
sometimes mixed up. Because the image is captured from
an overhead perspective to avoid occlusion, posture is often
poor for people distant from the camera. However, increas-
ing the resolution to solve this problem, further lengthens
processing time. Therefore, future work should focus on
identifying and implementing a tool that is more suitable
for the proposed method than OpenPose, considering both
real-time performance and detection accuracy.

6 . Conclusion

In this paper, we presented a system that allows only
the operator to control home appliances by introducing an
operation start gesture and an operator-specific command
space. We conducted experiments to evaluate the accu-
racy of our proposed gesture-based method for the remote
control of devices. Our experiments yielded the following
findings:

• Placing the command space considering the opera-
tor’s dominant hand is effective for improving recog-
nition accuracy.

• Therefore, it is advisable to dynamically adjust the
command space layout according to the operator’s
arm movement tendencies.

• The compatibility between command space arrange-
ment and gesture characteristics should be carefully
considered.

We believe that this work represents a significant step
toward realizing intelligent room. Our proposed method,
operatable with just two simple gestures, requires no com-
plex operational knowledge. Moreover, it can be used even
when the location of the device is unknown, because the
operation only needs to be linked to the command space.
However, because the command space is currently invis-
ible, beginners require some time to become accustomed
to its operation. Therefore, we are conducting further re-

search on visualizing command spaces to accelerate the
learning process [11].

Future work includes the following:

• Implementing more robust skeletal point detection
methods and suitable for real-time processing.

• Exploring the use of MR goggles to dynamically ad-
just the position and size of the command space,
thereby enhancing user accessibility and ease of in-
teraction.

References:
[1] R. Faizrakhmanov, A. Platunov, andM. R. Bahrami, “Smart home

user interface: Overview,” 2023 Int. Conf. on Industrial Engineer-
ing, Applications and Manufacturing (ICIEAM), pp. 595-600,
2023. https://doi.org/10.1109/ICIEAM57311.2023.10139050

[2] H. Nakayama, N. Yabuki, H. Inoue, Y. Sumi, and T. Tsukutani,
“A control system for electrical appliances using eye-gaze input,”
2012 Int. Symp. on Intelligent Signal Processing and Commu-
nications Systems, pp. 410-413, 2012. https://doi.org/10.1109/
ISPACS.2012.6473521

[3] S. Sugimura and K. Hoshino, “Wearable hand pose estimation
for remote control of a robot on the moon,” J. Robot. Mecha-
tron., Vol.29, No.5, pp. 829-837, 2017. https://doi.org/10.20965/
jrm.2017.p0829

[4] T. Nagayasu, H. Asano, K. Terabayashi, and K. Umeda, “Im-
provement of an intelligent room that detects hand waving mo-
tion for operation of home appliances,” SICE Annual Conf. 2011,
pp. 821-826, 2011.

[5] K. Irie, M. Takahashi, K. Terabayashi, H. Ogishima, and
K. Umeda, “Skin color registration using recognition ofwaving
hands,” J. Robot. Mechatron., Vol.22, No.3, pp. 262-272, 2010.
https://doi.org/10.20965/jrm.2010.p0262

[6] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-
person 2d pose estimation using part affinity fields,” 2017 IEEE
Conf. on Computer Vision and Pattern Recognition, pp. 7291-
7299, 2017. https://doi.org/10.1109/CVPR.2017.143

[7] M. Yokota, S. Majima, S. Pathak, and K. Umeda, “Intuitive
arm-pointing based home-appliance control from multiple cam-
era views,” 2023 32nd IEEE Int. Conf. on Robot and Human In-
teractive Communication (RO-MAN), pp. 179-184, 2023. https:
//doi.org/10.1109/RO-MAN57019.2023.10309557

[8] T. Kano, T. Kawamura, H. Asano, T. Nagayasu, and K. Umeda,
“Hand waving in command spaces: A framework for operating
home appliances,” Advanced Robotics, Vol.32, No.18, pp. 999-
1006, 2018. https://doi.org/10.1080/01691864.2018.1515661

[9] S. Yan, Y. Ji, and K. Umeda, “A system for operating home appli-
ances with hand positioning in a user-definable command space,”
2020 IEEE/SICE Int. Symp. on System Integration (SII), pp. 366-
370, 2020. https://doi.org/10.1109/SII46433.2020.9025978

[10] R. Hartley, “Multiple view geometry in computer vision,” Cam-
bridge University Press, 2003.

[11] Y. Mochizuki, M. Yokota, S. Pathak, and K. Umeda, “Visualis-
able and adjustable command spaces for gesture-based home ap-
pliance operation system via hololens2,” The 2025 IEEE/SICE
Int. Symp. on System Integrations (SII), pp. 1405-1410, 2025.
https://doi.org/10.1109/SII59315.2025.10870954

Int. J. of Automation Technology Vol.19 No.3, 2025 223



Yokota, M. et al.

Name:
Masae Yokota

Affiliation:
Precision Engineering Course, Graduate
School of Science and Engineering, Chuo
University

Address:
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
Brief Biographical History:
2023 Received B.Eng. in Precision Mechanics from Chuo University
Membership in Academic Societies:
• The Japan Society of Mechanical Engineers (JSME)
• Institute of Electrical and Electronics Engineers (IEEE)

Name:
Soichiro Majima

Affiliation:
Hitachi Global Life Solutions, Inc.

Address:
Hitachi Atago Bldg., 15-12 Nishi Shimbashi 2-chome, Minato-ku,
Tokyo 105-8410, Japan
Brief Biographical History:
2023 Received M.Eng. in Precision Mechanics from Chuo University
2023- Hitachi Global Life Solutions, Inc.

Name:
Yushin Mochizuki

Affiliation:
Precision Engineering Course, Graduate
School of Science and Engineering, Chuo
University

Address:
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
Brief Biographical History:
2024 Received B.Eng. in Precision Mechanics from Chuo University
Membership in Academic Societies:
• The Japan Society for Precision Engineering (JSPE)
• Institute of Electrical and Electronics Engineers (IEEE)

Name:
Sarthak Pathak

ORCID:
0000-0002-5271-1782

Affiliation:
Assistant Professor, Department of Precision
Mechanics, Chuo University

Address:
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
Brief Biographical History:
2014 Received Bachelor of Technology and Master of Technology
degrees from Department of Engineering Design, Indian Institute of
Technology, Madras (IITM)
2017 Received Ph.D. degree from Department of Precision
Engineering, The University of Tokyo
2017- Postdoctoral Researcher, Department of Precision Engineering,
The University of Tokyo
2018- JSPS Postdoctoral Research Fellow, Department of Precision
Engineering, The University of Tokyo
2020- Project Assistant Professor, Department of Precision
Engineering, The University of Tokyo
2021- Assistant Professor, Department of Precision Mechanics, Chuo
University
Main Works:
• S. Pathak, A. Moro, H. Fujii, A. Yamashita, and H. Asama, “Spherical
Video Stabilization by Estimating Rotation from Dense Optical Flow
Fields,” J. Robot. Mechatron., Vol.29, No.3, pp. 566-579, 2017.
• D. Kim, S. Pathak, A. Moro, A. Yamashita, and H. Asama,
“Self-Supervised Optical Flow Derotation Network for Rotation
Estimation of a Spherical Camera,” Advanced Robotics, Vol.35, No.2,
pp. 118-128, 2021.
• S. Pathak, A. Moro, A. Yamashita, and H. Asama, “A Decoupled
Virtual Camera Using Spherical Optical Flow,” Proc. of the 2016 IEEE
Int. Conf. on Image Processing (ICIP2016), pp. 4488-4492, 2016.
Membership in Academic Societies:
• Institute of Electrical and Electronic Engineers (IEEE)
• The Japan Society for Precision Engineering (JSPE)
• The Robotics Society of Japan (RSJ)

224 Int. J. of Automation Technology Vol.19 No.3, 2025



Home Appliance Operation via 3D Keypoint Based
Gesture Detection in Body-Relative Command Spaces

Name:
Kazunori Umeda

ORCID:
0000-0002-4458-4648

Affiliation:
Professor, Department of PrecisionMechanics,
Chuo University

Address:
1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
Brief Biographical History:
1994 Received Ph.D. in Precision Machinery Engineering from The
University of Tokyo
1994- Lecturer, Chuo University
2003-2004 Visiting Worker, National Research Council of Canada
Main Works:
• M. Shinozaki, M. Kusanagi, K. Umeda, G. Godin, and M. Rioux,
“Correction of color information of a 3D model using a range intensity
image,” Computer Vision and Image Understanding, Vol.113, No.11,
pp. 1170-1179, 2009.
• T. Kuroki, K. Terabayashi, and K. Umeda, “Construction of a
Compact Range Image Sensor Using Multi-Slit Laser Projector and
Obstacle Detection of a Humanoid with the Sensor,” 2010 IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS2010),
pp. 5972-5977, 2010.
• S. Yan, S. Pathak, and K. Umeda, “PointpartNet: 3D point-cloud
registration via deep part-based feature extraction,” Advanced Robotics,
Vol.36, No.15, pp. 724-734, 2022.
Membership in Academic Societies:
• The Robotics Society of Japan (RSJ)
• The Japan Society for Precision Engineering (JSPE)
• The Japan Society of Mechanical Engineers (JSME)
• The Society of Instrument and Control Engineers (SICE)
• The Institute of Electronics, Information and Communication
Engineers (IEICE)
• Institute of Electrical and Electronics Engineers (IEEE)

Int. J. of Automation Technology Vol.19 No.3, 2025 225


