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Abstract— This study proposes a method for accurately
estimating the mixing ratio of V. harveyi and soil bacteria by
analyzing motility in inverted microscope videos and extracting
24 features. Using an XGBoost model, the proposed method
outperformed SVM and 1D-CNN approaches. The proposed
analytical method will be implemented into a MD-based screen-
ing system integrating an inverted microscope, automated stage,
and robotic micromanipulator to enable real-time automated
classification, selection, and retrieval of antagonistic bacteria
during microscopic observation.

I. INTRODUCTION

In recent years, the global demand for food has been
rapidly expanding due to population growth and changes
in dietary habits. According to estimates by the Food and
Agriculture Organization (FAO) of the United Nations, the
world population is expected to reach approximately 9.3
billion by 2050, requiring an increase of about 60% in
food production to meet demand [1]. However, terrestrial
livestock production faces sustainability challenges, includ-
ing greenhouse gas emissions and excessive consumption
of virtual water, while marine resources are under pressure
from overfishing and environmental fluctuations. Against this
backdrop, aquaculture has attracted attention as a vital means
of ensuring future food security. Nevertheless, aquaculture
systems are highly vulnerable to infectious diseases caused
by pathogenic bacteria, and the risk of emerging pathogens
is further exacerbated by climate change. To address this
challenge, robot-assisted microscopic analysis and automated
cell manipulation technologies capable of rapid detection
and selection of antagonistic bacteria are being increasingly
recognized as promising solutions. V. harveyi are widely
distributed in marine environments and represent a major
pathogenic threat to farmed aquatic products. Conversely,
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certain environmental bacteria may possess antagonistic ac-
tivity that suppresses the growth of pathogenic bacteria. In
recent years, microdroplet (MD)-based cell interaction assays
have garnered attention for bacterial screening, enabling
the evaluation of metabolic activity and antagonistic effects
through co-culture in closed MDs. However, conventional
methods have difficulty in individually handling and selec-
tively isolating MDs, and fluorescence labeling of pathogens
requires genetic manipulation, which is not applicable to all
bacterial species. In the study by Murakami et al. [2], open-
type cell array devices with external access were developed,
enabling integrated microscopic observation, cultivation, and
selective picking. Furthermore, integrating these devices with
robotic manipulators and automated stages has the potential
to enable fully automated, real-time cell classification, selec-
tion, and retrieval based on image analysis results.

Currently, we are developing a cell-interaction based
screening system using MDs immobilized on a planar sub-
strate. In this system, V. harveyi and environmental bacteria
are co-cultured to screen possible antagonistic strain. Here,
we found that V. harveyi is highly motile compared to
environmental bacteria. In this study, we develop an image-
based analytical workflow to predict the ratio of V. harveyi
within the mixed bacterial population. Multiple motility
features of bacteria in the videos were extracted, and the
mixing ratios were estimated with high accuracy using XG-
Boost (Extreme Gradient Boosting) [3], a gradient boosting
decision tree algorithm. In the future, the proposed analytical
method will be implemented into a MD-based screening
system integrating an inverted microscope, automated stage,
and robotic micromanipulator to enable real-time automated
classification, selection, and retrieval of antagonistic bacteria
during microscopic observation. By combining consistent
image analysis with robotic manipulation control, the system
aims to achieve rapid pathogen control in aquaculture and
efficient strain acquisition in research environments.

II. RELATED WORKS

Recent advancements in robotic technologies have facili-
tated the automation of cell and microorganism detection,
selection, and retrieval within integrated microscopic sys-
tems. Wang et al. [4] developed a microfluidic robot that
seamlessly combines a microfluidic device with a high-
precision robotic manipulator, enabling automated detection,
spatial localization, and aspiration-based retrieval of target
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cells derived from microscopic image analysis. This inte-
gration achieves single-cell-level precision, significantly re-
ducing manual intervention while enhancing reproducibility
and throughput in large-scale cell screening and functional
characterization. Importantly, their work demonstrates the
feasibility of real-time coupling between microfluidic chip–
based cell handling and robotic arm control, thereby automat-
ing micromanipulation tasks that were previously dependent
on skilled operators.

Rolda et al. [5] proposed a deep learning–driven auto-
mated micromanipulation platform in which high-accuracy
target cell detection within microscopic images is directly
linked to robotic arm control for selective retrieval. By
tightly coupling deep convolutional neural network–based
recognition algorithms with robotic actuation, the system
achieves robustness against imaging noise and morpholog-
ical heterogeneity, while also improving operational speed.
Their approach further benefits from iterative optimization
of recognition accuracy through curated training datasets,
as well as from refined motion planning algorithms for
the robotic manipulator, leading to a notable increase in
successful retrieval rates.

Collectively, these prior studies underscore the effective-
ness of integrating microscopy, computer vision, and robotic
manipulation to enhance both the efficiency and precision
of microbial screening and cell selection workflows. Build-
ing upon this foundation, the present study introduces a
motility–based analytical framework for estimating the com-
position ratio of V. harveyi and soil bacteria in inverted
microscope videos. This framework is ultimately intended for
integration into a robotic platform comprising a microscope,
automated stage, and micromanipulator, with the goal of en-
abling real-time, fully automated classification, selection, and
retrieval of antagonistic bacteria. Such a system is expected
to contribute to rapid pathogen control in aquaculture and to
enhance efficiency in research-oriented strain acquisition.

III. PROPOSED METHOD

A. Overview of the Proposed Method

This study proposes a classification framework for esti-
mating the mixing ratio of V. harveyi and soil bacteria from
microscopic motion, without the need for segmentation or
tracking of individual cells. The overall workflow comprises
three primary stages: (1) acquisition of bacterial motion
videos using an inverted microscope, (2) processing of the
recorded video sequences to extract motion features, and (3)
classification using an XGBoost [3] model trained on the
extracted features. The proposed approach operates without
fluorescent labeling or complex preprocessing, thereby en-
hancing its suitability for future integration into automated
systems capable of real-time bacterial classification and
selective picking in both aquaculture and research environ-
ments.

B. Video Acquisition and Dataset Preparation

Bacterial motion videos were acquired using an inverted
microscope under controlled laboratory conditions. The mix-

Fig. 1: Original image with a
mixing ratio of 5:5

Fig. 2: Magnitude of the ve-
locity vector for each pixel at
a mixing ratio of 5:5

ing ratio of V. harveyi to soil bacteria was systematically
varied from 10:0 to 0:10 in increments of 0.5, yielding a
total of 21 distinct mixture conditions. For each condition,
videos were recorded at a frame rate of 9 frames per second
(fps), with a total of 27 frames per video, at a spatial
resolution of 1920 × 1200 pixels. To ensure spatial diversity
in bacterial distribution, each condition is recorded ten times
while varying the observation position across the sample.

C. Motion Feature Extraction

Each acquired video was spatially partitioned by cropping
the original 1920 × 1200-pixel frame into six regions of
640× 600 pixels, as illustrated in Fig. 1. This partitioning
enables localized motion analysis and effectively increases
the number of samples for training.

Dense optical flow was computed using the Farnebäck
method [6], which estimates pixel-wise motion vectors be-
tween consecutive frames based on local polynomial approx-
imations of image intensity. This approach provides smooth
and robust flow fields across different spatial scales, making
it suitable for analyzing subtle bacterial movements without
explicit cell segmentation or tracking.

From each optical flow field, 24 statistical and structural
features were extracted and grouped into six categories:
(1) velocity statistics, (2) directional statistics, (3) motion
diversity indices, (4) frequency-domain features, (5) spatial
gradient energy indices, and (6) local motion pattern indices.
These features comprehensively represent motion magnitude,
directionality, heterogeneity, and local collective behaviors
observed in bacterial populations.

All features were standardized to zero mean and unit
variance before classification. For each mixture condition,
50 samples were used for training, and the remainder were
reserved for validation and testing.

1) Velocity Statistics: Velocity statistics provide funda-
mental measures of bacterial motility and its spatial distribu-
tion. In this study, we compute the mean, standard deviation,
and median of the optical flow vector magnitudes, as well
as the mean velocities for the top 25%, 10%, 5%, and
1% of pixels ranked by magnitude. These indicators allow
detection of locally high-mobility regions even when the
overall motion is small, as shown in Fig. 2.
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Fig. 3: Mask image of mov-
ing pixels with a mixing ratio
of 5:5

Fig. 4: HSV color visualiza-
tion chart of direction and
magnitude of velocity

To quantify the spatial extent of active motion, we compute
the proportion of moving pixels. For each frame t, let mt

i j
be the motion magnitude between frames t and t + 1. A
threshold τ t is defined as:

τ
t = median(mt

i j)+1.5×MAD(mt
i j) (1)

where MAD denotes the median absolute deviation, a robust
measure against outliers.

The proportion rt of pixels exceeding the threshold is:

rt =
1

HW

H

∑
i=1

W

∑
j=1

{
1, mt

i j > τ t

0, otherwise
(2)

The average proportion across all frames is:

Proportion of moving pixels =
1

T −1

T−1

∑
t=1

rt (3)

This metric captures not only motion magnitude but also the
spatial prevalence of high-motion pixels, enabling identifica-
tion of locally active bacterial clusters, as shown in Fig. 3.

2) Directional Statistics: Directional statistics character-
ize the directional properties of bacterial motion. In this
method, the mean and standard deviation of the directional
concentration are calculated to assess whether the motion
is biased toward a specific direction (directional motion)
or random (isotropic motion). High concentration values
indicate dominant, ordered movement, while low values
indicate complex, multi-directional motion.

3) Motion Diversity Indices: Motion diversity indices
quantify the complexity and variability of motion patterns. In
this method, the mean and standard deviation of the entropy
of the velocity vector directions are calculated. High entropy
values indicate diverse directions and velocities, while low
entropy values indicate uniform and ordered motion. This
allows for the classification of bacterial motion patterns into
monotonic and diverse types. Fig. 4 shows an HSV color
visualization diagram of direction and magnitude of velocity.
Fig. 5 further illustrates the angular distribution in polar
coordinates for a mixing ratio of 5:5.

4) Frequency-Domain Features: Frequency-domain fea-
tures are obtained from the power spectrum of the optical
flow magnitude. A Fast Fourier Transform (FFT) is applied,
and the ratio of high-frequency power to the total power

Fig. 5: Polar coordinate his-
togram of angular distribu-
tion for a mixing ratio of 5:5

Fig. 6: FFT log power spec-
trum and cutoff circle of dif-
ference images with a mixing
ratio of 5:5

is calculated. The mean and standard deviation of this ratio
across frames are used as features. Higher ratios indicate fine,
abrupt motion, while lower ratios indicate smooth, large-
scale motion. Fig. 6 shows an FFT log power spectrum of a
difference image with the cutoff circle separating low- and
high-frequency components.

5) Spatial Gradient and Autocorrelation Indices: This
feature category quantifies local intensity variation and spa-
tial continuity within the velocity field. The mean and
standard deviation of spatial autocorrelation are computed
to measure the similarity of motion patterns between neigh-
boring regions. Higher values indicate predominant con-
tinuous motion across space, whereas lower values reflect
pronounced local heterogeneity.

6) Local Motion Pattern Indices: Local motion pattern
indices characterize the local structural properties of bacterial
motion. The mean and standard deviation of divergence are
computed to quantify the degree of local contraction or
expansion, with positive values indicating spreading motion
and negative values indicating converging motion, as shown
in Fig. 7.

Similarly, the mean and standard deviation of vorticity are
computed to assess the strength and distribution of local
rotational motion. Large vorticity values indicate motion
involving rotation, whereas small values indicate predomi-
nantly linear or diffusive motion, as shown in Fig. 8.

Furthermore, motion regions obtained by thresholding the
optical flow field are analyzed via connected component
analysis. The number of connected components, the mean
and standard deviation of component areas, and the 95
percentile of component area are calculated to quantitatively
assess whether bacterial populations are isolated or widely
distributed.

D. Model Architecture and Training

In this study, 24 features from six categories, extracted
via optical flow analysis, are used as inputs to predict bac-
terial mixing ratios using XGBoost [3], a gradient boosting
decision tree model. XGBoost incrementally constructs an
ensemble of decision trees, where each subsequent tree
corrects the residuals of the previous ones, enabling accurate
modeling of complex non-linear relationships and feature
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Fig. 7: Divergence map with
a mixing ratio of 5:5

Fig. 8: Vorticity map for a
mixing ratio of 5:5

interactions. Owing to the inherent characteristics of tree-
based models, no feature scaling or normalization is required,
allowing diverse statistical, distributional, and spatial descrip-
tors to be integrated into a unified input space.

The input vector comprises six categories: velocity
statistics, directional statistics, motion diversity indices,
frequency-domain features, spatial gradient and autocorrela-
tion indices, and local motion pattern indices. Each category
represents a distinct aspect of bacterial motility, and their
combination provides a high-dimensional representation of
complex motion patterns that cannot be characterized by a
single metric.

For training, 50 samples per condition are selected from
ten recordings taken at different positions. Hyperparameters,
including maximum tree depth, learning rate, and number of
trees, are optimized via grid search and cross-validation to
mitigate overfitting. Model performance is evaluated on an
independent test dataset, with accuracy, recall, and F1 score
as evaluation metrics.

IV. EXPERIMENTS

A. Overview of the Experiments

In this study, a dataset acquired using an inverted micro-
scope was employed to classify the mixing ratios of V. har-
veyi and soil bacteria. Classification was performed using
24 motion features, and classification accuracy was evalu-
ated. Optimal model hyperparameters were also determined.
Furthermore, performance comparisons were conducted with
Support Vector Machine (SVM) [7] and lightweight one-
dimensional Convolutional Neural Network (1D-CNN) [8]
models, as well as between using all features and using only
the most important features.

B. Sample Preparation

The V. harveyi strain used in this study was kindly pro-
vided by Dr. Koiwai. Environmental bacterial strains were
isolated from soil samples collected from the flower beds at
Chuo University Korakuen Campus and subsequently puri-
fied through membrane filtration. Both bacterial strains were
stored at −80◦C until use. For experimental preparation, a
small aliquot from each frozen stock was inoculated into
growth medium and cultured overnight at 25 ◦C with shaking.
Cell concentrations were then determined, and each bacterial

suspension was diluted to a final density of 5×108 cell/ml.
The two bacterial suspensions were mixed at the desired
ratios, placed on glass slides, and mounted as microscope
specimens. Observations were conducted using an inverted
microscope (Nikon Ti), and videos were recorded with a
CCD camera.

C. Dataset

The data were acquired as described in Section III-B, and
each video was then cropped into six regions of 640 × 600
pixels, resulting in six stacked images per video and a total
of 1,260 samples. From these, 50 samples per condition were
randomly selected for model training, and the remaining
samples were used as the test dataset.

D. Hyperparameter Settings

In this study, multiple hyperparameters of the XGBoost [3]
model were exhaustively explored to identify the configura-
tion that maximized generalization performance. The param-
eters examined included maximum tree depth (5, 7), learning
rate (0.05, 0.1), number of trees (400, 800), subsampling rate
(0.8, 1.0), feature subsampling rate (0.8, 1.0), L2 regulariza-
tion strength (1.0, 3.0), and the minimum sum of instance
weight required for child node creation (1.0, 3.0). A five-fold
cross-validation was applied to all parameter combinations,
and the configuration yielding the highest accuracy was
adopted. The optimal setting was found to be 80% feature
subsampling, a learning rate of 0.05, maximum tree depth
of 5, minimum sum of instance weight of 1.0, 800 trees,
and L2 regularization strength of 3.0. This configuration
effectively suppressed overfitting while capturing complex
feature interactions with high accuracy.

E. Classification of Mixing Ratios Using 24 Features

Using the optimal hyperparameters determined in Sec-
tion IV-D, the classification of Vibrio and soil bacteria
mixing ratios was conducted based on 24 motion features.
The classification results are shown in the confusion matrix
in Fig. 9. The overall classification accuracy reached 85.7%,
indicating that the mixing ratios could be distinguished
with comparatively high accuracy. Furthermore, the results
showed that classification performance was high under con-
ditions where either V. harveyi or soil bacteria predominated,
whereas accuracy tended to decline when their mixing ratios
were comparable.

Permutation importance analysis results are presented in
Fig. 10. As shown, the features contributing most sub-
stantially to the predictive performance of the model were
highfreq ratio mean and mag p50. The former represents the
mean proportion of high-frequency components, capturing
fine-scale fluctuations and rapid directional changes that
are characteristic of the highly motile V. harveyi, whereas
the latter corresponds to the median magnitude of velocity
vectors, reflecting the overall motility level and smooth
trajectories that are more typical of soil bacteria. This
contrast in temporal and spatial motion signatures allows
these two features to effectively discriminate between fast,
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Fig. 9: Classification results using 24 features

Fig. 10: Permutation importance results using 24 features

irregular swimming patterns and slow, steady movements.
The prominence of these features therefore indicates that
the model’s decision-making process predominantly relies on
motion frequency characteristics and representative measures
of velocity distribution that embody the fundamental behav-
ioral differences between the two bacterial types.

In addition, features such as ang concentration mean,
comp count mean, and comp area std exhibited moderate
importance, implying that morphological and spatial at-
tributes—such as the directional concentration of motion, the
number of discrete regions, and the variability in their ar-
eas—provide supplementary discriminative information that
enhances classification performance.

Conversely, features including mag p75 and vort std dis-
played near-zero importance, indicating a negligible contri-
bution within the current model. This outcome suggests that
such features may be highly correlated with other variables
or offer limited discriminatory capacity for this classification
task, rendering them potential candidates for exclusion in
future feature selection or model simplification efforts.

Collectively, these findings indicate that the model pri-
marily exploits motion frequency characteristics and velocity
distribution as the principal criteria for classification, while
morphological and spatial descriptors act as complementary
factors. This underscores the efficacy of employing multi-
dimensional feature extraction for the quantitative analysis
of microbial motility patterns. Furthermore, these results
suggest that future feature design should incorporate multi-
scale temporal dynamics, frequency-domain descriptors, and
measures of trajectory stability or coherence. By capturing

TABLE I: Classification accuracy of XGBoost, SVM, and
1D-CNN

Model Accuracy
XGBoost (24 features) 0.857
SVM 0.848
1D-CNN 0.842

TABLE II: Classification accuracy using all features versus
only the most important features

Case Features Used Accuracy
all features All 24 features 0.857
highfreq only highfreq ratio mean 0.148
mag p50 only mag p50 0.071
both hf mag highfreq ratio mean, mag p50 0.210

both global motion tendencies and localized fluctuations,
such features may enhance interpretability and generalization
across different bacterial species and environmental condi-
tions.

F. Comparison with SVM and 1D-CNN

To evaluate the performance of different modeling ap-
proaches, we compared the proposed XGBoost classifier with
SVM [7] and 1D-CNN [8]. All models were trained using
the same 24 motion features extracted from the optical flow
sequences. The obtained accuracies were 84.76% for the
SVM [7], 84.29% for the 1D-CNN [8], and 85.7% for the
proposed XGBoost.

The SVM [7] achieved stable performance, showing that
the extracted features provide clear class separability. How-
ever, its kernel-based decision boundaries could not fully
capture complex nonlinear relationships among motion fea-
tures. The 1D-CNN [8], while capable of learning local
dependencies within the feature vector, showed slightly lower
accuracy due to the limited dataset size, which restricted its
ability to generalize and avoid overfitting.

In contrast, XGBoost [3] achieved the highest accuracy
and exhibited more consistent results across random splits.
These findings suggest that gradient-boosting frameworks
can effectively model nonlinear feature interactions and
maintain robustness in small-scale biological datasets, offer-
ing a better balance between accuracy and interpretability
than SVM [7] or 1D-CNN [8].

G. Comparison with Using Only the Most Important Fea-
tures

This section evaluates the classification performance when
using only the top-ranked features identified by the Permu-
tation Importance analysis, specifically highfreq ratio mean
and mag p50. Three experimental configurations were ex-
amined: (1) using only highfreq ratio mean, (2) using only
mag p50, and (3) using both features in combination. For
reference, the classification result obtained using all 24 ex-
tracted motion features is also presented. Table II summarizes
the results, while Fig. 11 illustrates the confusion matrices
for the three reduced-feature configurations.

The results indicate that the exclusive use of the most
important features, either individually or in combination,
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(a) Result using only high-
freq ratio mean

(b) Result using only mag p50

(c) Result using both features

Fig. 11: Results using the most important features

resulted in a substantial decrease in classification accu-
racy compared to the use of all features. Although high-
freq ratio mean and mag p50 were identified as highly in-
fluential in the prediction process, they alone do not provide
sufficient discriminative capacity to accurately classify the
bacterial mixture ratios. Even when both features were used
together, the accuracy reached only 0.210, underscoring the
necessity of incorporating additional complementary fea-
tures.

This observation underscores the importance of feature
diversity in the proposed method. While frequency-domain
characteristics and velocity magnitude distributions consti-
tute key determinants of classification, morphological and
spatial descriptors—such as angular concentration, compo-
nent count, and component area variability—serve a crucial
complementary role. Overall, the ablation study demonstrates
that reliance on a small subset of features markedly restricts
classification performance, thereby reaffirming the necessity
of integrating multiple heterogeneous features to achieve
robust bacterial mixture ratio estimation.

V. CONCLUSION

In this study, we addressed the classification of mixing
ratios between V. harveyi and soil bacteria using 24 mo-
tion features extracted from bacterial motility videos cap-
tured with an inverted microscope. The experimental results
demonstrated that employing all features achieved a classi-
fication accuracy of 85.7%, confirming the effectiveness of
the XGBoost [3] model even under limited-data conditions.
Comparative experiments with SVM [7] and 1D-CNN [8]
models showed slightly lower performance, mainly because
these methods could not effectively model nonlinear feature

relationships in a small dataset. Furthermore, the feature
importance analysis revealed that the average ratio of high-
frequency components and the median magnitude of veloc-
ity vectors were the most influential predictors, suggesting
that the model primarily leverages frequency-domain motion
characteristics and representative velocity metrics as core
decision criteria.

Future work aims to integrate the proposed method into
a robotic system consisting of an inverted microscope, au-
tomated stage, and micromanipulator to enable real-time
automated classification and selection of cells and bacteria
during microscopic observation. This classification capability
will allow the robotic system to selectively pick MDs in
which the growth of V. harveyi is suppressed after co-culture
with environmental bacteria. By combining automated clas-
sification with robotic manipulation, the system will facilitate
the rapid identification and retrieval of antagonistic strains,
contributing to pathogen control in aquaculture and efficient
strain acquisition in research environments.

In addition, we plan to extend the current framework
to handle more diverse environmental conditions, longer
observation durations, and larger datasets to evaluate ro-
bustness and scalability. Incorporating regression-based ratio
estimation and ordinal evaluation metrics will also enable
more continuous and interpretable assessments of bacterial
dynamics. These future developments are expected to ad-
vance toward a robust, scalable robotic screening platform
capable of real-time analysis and selective manipulation in
various microscopic environments.
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