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A Device Control System Using User-Defined Full-Body Gestures
with HoloLens2
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Abstract— This paper presents a novel system that allows
users to operate devices through full-body gestures they
define themselves. Gesture-based control systems are seeing
widespread application for controlling a diverse range of
devices. However, most existing systems rely on a predefined
set of gestures. This fundamental limitation restricts not only
the number of possible operations but also the overall system
flexibility. The proposed system overcomes the limitation. The
proposed system comprises two primary phases. In the initial
definition phase, a user wearing a HoloLens2 defines a new
gesture by directly manipulating the posture of a virtual avatar.
This approach facilitates a highly visual and intuitive method
for gesture creation. Throughout this definition process, an
external camera system captures the user’s movements and
computes the skeletal joint data. Then, in the subsequent
operation phase, the user can control devices by performing
the defined gesture without needing to wear the HoloLens2.
For recognition, the system relies solely on the external camera
system. This results in a highly adaptable and extensible
framework for gesture-based interaction.

I. INTRODUCTION

In recent years, gesture recognition systems have been
applied across a diverse range of fields. With the spread of
the Internet of Things (IoT) and smart homes, gesture control
is increasingly valued as an intuitive method for interacting
with electronic devices. In medical and industrial settings, for
instance, touchless interfaces are being developed to mitigate
risks such as operational delays or contamination caused
by physical contact with equipment[1]. Similarly, interfaces
are being developed that enable users to intuitively control
public displays through body movements.[2]. These varied
applications highlight a growing demand for robust and user-
friendly gesture recognition technologies.

Several studies have explored the use of gestures for
controlling multiple devices. Yan et al., proposed a system
where users control home appliances by performing a hand
gesture within a “command space” associated with a specific
command[3]. In our previous work, we proposed a method
that utilizes the Microsoft HoloLens2[4] to visualize and
adjust these command spaces, thereby providing a flexible
control environment tailored to the individual user[5]. How-
ever, these existing approaches face significant limitations.
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The number of available operations is inherently constrained
by the number of command spaces that can be established.

The objective of this paper is to develop a highly adaptable
interface that empowers users to operate devices using user-
defined full-body movements. To achieve this, we propose
a system that leverages the HoloLens2 for the intuitive def-
inition of these gestures. This paper primarily targets home
and office environments, with the goal of enhancing usability
and accessibility by providing a control environment that
conforms to an individual’s unique intuition and physical
characteristics. Furthermore, the proposed method has the
potential to be extended to scenarios requiring touchless
operation, such as in healthcare, manufacturing, and public
facilities.

II. RELATED WORKS

To create more effective gesture recognition systems, sev-
eral studies have explored the concept of user-definable ges-
tures. For example, Vogiatzidakis et al. developed a system
for controlling multiple home devices with mid-air gestures,
which allowed for significant spatial freedom[6]. However, a
key limitation was that the gestures were restricted to a fixed
set based on user surveys, and the system did not allow users
to add their own gesture. Similarly, Ye et al. proposed an AR-
based prototyping tool on smartphones for interaction design
with IoT devices[7]. While this tool let users assign gestures
to any location, the choice of gestures was limited to only
three predefined types. These studies are supported by the
findings of Nacenta et al., who reported that user-defined
gestures are significantly easier for people to remember and
feel more intuitive than system-defined ones[8].

The interaction between Mixed Reality (MR) and robotics
is also an active area of research. Systems have been pro-
posed that use HoloLens2 to operate a digital twin of a
robot arm[9], and to interactively control wearable[10] and
collaborative[11] robot arms through gestures. These studies
show that MR devices can enhance operational freedom and
usability.

Other research in gesture interaction includes a dynamic
gesture recognition method for human-robot interaction[12]
and gesture recognition for drone control[13]. While these
studies demonstrate effectiveness for specific applications,
they are designed for limited environments or purposes.
A challenge remains in adapting them to more diverse
operational needs and living environments. To address these
limitations, this paper aims to build a general-purpose and
flexible gesture control interface that users can freely define.
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ITIT. PROPOSED SYSTEM

A. System Overview

Our system consists of two main phases: a definition phase
and a recognition phase.

In the definition phase, the user wears a HoloLens2 to
define a new gesture. First, a system using an external camera
captures the user’s posture, and this posture data is sent
to the HoloLens2. This data sets the initial posture of a
virtual avatar. The user then refines the avatar’s posture and
specifies the gesture’s tolerance range. The defined gesture
information is then sent to the gesture recognition module
and saved.

In the recognition phase, the system matches the user’s
current movements captured by the external cameras with
the saved gesture definitions. Upon finding a match, the
corresponding device operation is executed. Because this
recognition process use the saved data, the user can perform
gestures without wearing the HoloLens2.

ManipulationlCube)
[Adjustablelanglefand/position}

GesturellolerancelRange]

Fig. 4: Gesture Tolerance Range

B. System Environment

The gesture definition module runs on the HoloLens2,
which renders the avatar and allows the user to perform the
definition task. The gesture recognition module, as well as
the initial avatar posture setting during the definition phase,
are managed by the external camera system.

In principle, our method can operate in any environment
where 3D coordinates can be obtained using a minimum
of two cameras or one RGB-D camera. For this study, we
constructed an environment with four CCD cameras installed
at the ceiling corners of a room. This setup ensures stable
recognition regardless of the user’s position or orientation.

We apply OpenPose[14] to the captured images to estimate
the 2D skeletal joints of the human body in real-time.
By applying stereo vision to the information from these
multiple viewpoints, we reconstruct the 3D coordinates of
each skeletal joint.
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C. Gesture Definition Interface

In our system, the user wears the HoloLens2 to see a life-
sized avatar from a third-person perspective, as shown in
Fig.1[15]. The user defines a gesture by directly manipulating
this avatar. The avatar is equipped with an Inverse Kinematics
(IK) function, ensuring that adjustments result in natural and
physically plausible joint movements. This feature facilitates
the creation of realistic postures and prevents poses that
would exceed the natural range of human motion.

The configuration process is mode-based, allowing for
intuitive operation. The user can switch between modes by
pressing a series of buttons, shown in Fig.2, from left to
right.

1) Automatic Posture Synchronization: Manually adjust-
ing the avatar’s posture from an initial default state can be
a significant burden for the user. To reduce this burden, our
system includes a function that automatically synchronizes
the avatar’s posture with the user’s current posture at the
beginning of the definition process.

This process is executed as follows. First, the external
camera system acquires the user’s skeletal information and
calculates the 3D relative coordinates of major joints (wrists,
ankles, head, and waist) with the chest as the reference point.
Next, this coordinate data is continuously collected for 5s,
and the time-average is calculated. The resulting average
coordinate data is then sent to the HoloLens2 and applied
to the corresponding parts of the avatar. This enables the
user to start the gesture definition process more efficiently
from a pose that closely matches their own gesture.

2) Gesture Definition using HoloLens2: After the auto-
matic adjustment, the user performs more detailed manual
adjustments on the HoloLens2. First, the user adjusts the
overall scale and spatial position of the avatar. The avatar’s
scale is matched to the user’s height so that the user can
intuitively check the posture by overlaying their own body
with the avatar after the definition is complete.

Next, the user defines the target posture. As shown in
Fig.3, manipulation cubes are displayed on the avatar’s major
joints (wrists, ankles, head, and waist). The user can drag
these manipulation cubes to precisely set the desired gesture
posture. Furthermore, by using the joint selection buttons
shown in Fig.2, the user can display only the manipulation
cubes for specific joints, allowing for more focused adjust-
ments.

The user then sets the tolerance range for the gesture
posture, as shown in Fig.4. This setting accommodates for
errors in reproducibility and slight inconsistencies in how the
user performs the arm movements. By adjusting the shape of
this tolerance range according to the user’s intent, the sys-
tem can prevent misrecognition between similar movements
while enabling flexible and intuitive operation. Specifically,
tolerance boxes corresponding to the positions of the wrists,
elbows, knees, ankles, waist, and head are displayed on the
avatar. A gesture is recognized when all specified joints
are within their corresponding tolerance boxes. By adjusting
the position and size of these tolerance boxes, the user can
flexibly define the spatial tolerance for the target movement.

In this setting as well, the buttons shown in Fig.2 are
displayed, allowing the user to manipulate the tolerance box
for a specific body part.

After all definitions are complete, pressing the save button
sends the defined gesture information to the gesture recog-
nition module, where the gesture information is stored.

D. Gesture Coordinate Transmission

Once a gesture is defined by the user on the HoloLens2,
the relevant information is transmitted to the gesture recogni-
tion module over a network connection. For this data transfer,
we employ the TCP/IP protocol, which ensures efficient
transmission of the lightweight coordinate data used by our
system.

The transmitted data package primarily consists of the
vertex coordinates for the tolerance boxes that constitute the
gesture’s tolerance range. All coordinates are defined relative
to the avatar’s chest, establishing a local coordinate frame
for the gesture. This data effectively outlines the spatial
regions within which the user’s joints must be positioned
for a successful match. The gesture recognition module then
uses this information to perform its matching recognition.

This clear separation of the definition and recognition
phases is a key architectural feature of our system. It enables
users to control devices via gestures without needing the
HoloLens2, following a one-time initial setup.

E. Gesture Recognition Method

The gesture recognition module operates based on the
user’s skeletal information, which is acquired in real-time
from the external camera system. It calculates the 3D coor-
dinates of the wrists, elbows, knees, ankles, waist, and head
for use in gesture recognition. To prevent misrecognition
from unintentional movements, the system begins the gesture
recognition only after detecting that the user’s body has been
static for a certain period.

For the recognition, the system first establishes a relative
coordinate system fixed to the user’s body to account for
differences in height and position. The chest coordinate is
set as the origin, the line connecting the shoulders as the
Y-axis, the body’s height direction as the Z-axis, and their
cross product as the X-axis. All target joint coordinates are
then transformed into this relative coordinate system. This
process reduces the influence of individual differences and
enables stable recognition.

To ensure consistency during a sustained posture, the
orientation of this coordinate system remains fixed while the
user is static. The origin, however, continuously tracks the
chest’s movement. This dynamic origin allows the system to
correctly recognize gestures even if the user changes their
overall position, such as by transitioning from standing to
sitting.

Ultimately, a gesture is deemed successful if all specified
target joints, once transformed, are located within their
respective, user-defined tolerance boxes. Through this com-
prehensive recognition method, our system achieves stable
and high-precision performance for a wide range of gestures.
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(a) Y-Pose

(b) Sitting Pose

Fig. 5: Gestures Defined in Experiment 1

IV. EXPERIMENT
A. Experiment Overview

To evaluate the effectiveness of our proposed system,
we conducted two experiments with 12 male and female
participants in their 20s. We assessed the system based on
three key metrics: operation time, task accuracy, and user
experience, the last of which was measured via subjective
workload and usability questionnaires.

(This experiment was approved by the ethics committee at
Chuo University.)

1) Experiment [1: Experiment 1 aimed to compare the
effects of predefined versus user-defined gestures on task
performance and subjective workload. Participants performed
two common gestures shown in Fig.5, a “Y-pose” and a
“sitting pose”, under two different conditions: a “predefined
condition,” where they used gestures set by an experimenter,
and a “user-defined condition,” where they defined and used
their own gestures with our system. For the predefined
condition, the experimenter set gestures to match common
motion images, with a uniform tolerance range of a 35 cm
cube for all joints. We measured task completion time and
accuracy as quantitative data. Task completion time includes
the time the user performs gestures.

Following the tasks, subjective workload was assessed
using the NASA-Taylor Load Index (NASA-TLX)[16]. This
standard method evaluates perceived workload across six
subscales: Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, and Frustration. An overall
workload score is derived from a weighted average of these
scales. Crucially, this evaluation focused solely on the work-
load associated with performing the gesture-based control
task.

2) Experiment 2: The purpose of Experiment 2 was to
evaluate the overall usability of the entire process, from
defining a gesture to performing a task. Participants were
asked to define an arbitrary gesture using our system and then
immediately use it to complete a specific task. We measured
task completion time and accuracy.

Additionally, we evaluated the overall usability of the

TABLE I: Experiment 1 Results

Mean Time to Detect Percentage not Recognised

Y Pose (Predefined condition) 2.71s 30 %
Y Pose (User-defined) 2.75s 3%
Sitting Pose (Predefined condition) 3.60s 61 9%
Sitting Pose(User-defined) 4.32s 42 o

system using the System Usability Scale (SUS)[17]. The
SUS is a questionnaire that quantitatively assesses system
usability through the following 10 items:

1: I think that I would like to use this system frequently.

2: I found the system unnecessarily complex.

3: I thought the system was easy to use.

4: 1 think that I would need the support of a technical person
to be able to use this system.

5: I found the various functions in this system were well
integrated.

6: I thought there was too much inconsistency in this system.
7: I would imagine that most people would learn to use this
system very quickly.

8: I found the system very cumbersome to use.

9: I felt very confident using the system.

10: I needed to learn a lot of things before I could get going
with this system.

Participants responded to each item on a 5-point Likert
scale from “Strongly Agree” to “Strongly Disagree.” The
SUS score is calculated by summing the scores for odd-
numbered questions, subtracting 5, and adding this to 25
minus the sum of scores for even-numbered questions, then
multiplying the result by 2.5. This experiment evaluated the
entire process, from gesture definition with HoloLens2 to
recognition.

B. Experimental Conditions

In each gesture task, participants performed three trials per
gesture. The gesture recognition phase for all experiments
was conducted without wearing the HoloLens2.

For the evaluation, we measured operation time and ac-
curacy. Operation time was measured from the start signal
of a task until the system correctly recognized the gesture.
Accuracy was the success rate over the three trials. A trial
was considered a failure if the gesture was not recognized
within 10s from the start.

C. Experiment 1: Results and Discussion

1) Results: The results for operation time and failure
rate in Experiment 1 are shown in Table 1. For the Y-
pose, the average operation time in the predefined condition
was 2.71s with a 30% failure rate, whereas in the user-
defined condition, the average time was 2.75s with a 3%
failure rate. Similarly, for the sitting pose, the predefined
condition resulted in an average operation time of 3.60s and
a 61% failure rate, compared to 4.32s and a 42% failure
rate in the user-defined condition. These results confirm that
while operation time slightly increased, the failure rate for
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TABLE II: Average NASA-TLX Score

TABLE III: Experiment 2 Results

Predefined condition User-defined

Mental Demand 22.1 17.8
Physical Demand 14.1 9.9
Temporal Demand 11.3 7.5
Effort 26.3 20.8
Frustration 14.0 8.6
Performance Demand 51.3 29.4
Weighted Workload 25.9 18.0
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Fig. 6: NASA-TLX Score

both gestures improved significantly when users defined the
gestures themselves.

The NASA-TLX results are presented in Table II and
Fig.6. For all six subscales, the average scores for the user-
defined condition were lower than those for the predefined
condition. The overall workload score was also significantly
lower for the user-defined condition (M = 18.04, SD =
10.11) compared to the predefined condition (M = 25.88,
SD = 11.70). Before applying the test, we visually inspected
the distribution of the difference scores and confirmed no
significant deviation from normality. A paired-samples t-
test revealed that this difference was statistically significant
(t(11)=3.71, p=0.003). This indicates that using user-defined
gestures significantly reduces subjective workload.

2) Discussion: Overall, the results indicate that user-
defined gestures yielded a higher success rate and lower
subjective workload, although they came at the cost of a
minor increase in operation time. We attribute this increased
operation time to a characteristic of our current definition
interface’s recognition logic, which requires all target joints
to be strictly within their defined tolerance boxes. Conse-
quently, if a participant defined a very narrow tolerance
range, even slight deviations during performance could lead
to recognition delays. Future work could address this by
introducing features to assist with tolerance setting, or by
implementing a more flexible recognition algorithm that can
accommodate a certain degree of error.

Furthermore, the sitting pose had a generally higher failure
rate than the Y-pose. Reproducing the Y-pose primarily
requires conscious positioning of the arms, a relatively

Mean Time to Detect Percentage not Recognised

Freely Pose 2.77 s 17 %

simple task. The sitting pose, in contrast, demands accurate
positioning of the entire body, including the less-consciously
controlled legs and waist. This is likely because the increased
complexity imposes a higher cognitive load on the user,
leading to greater performance variability and, thus, a higher
failure rate.

D. Experiment 2: Results and Discussion

1) Results: The results for operation accuracy and time
with freely defined gestures in Experiment 2 are shown in
Table III. The average operation time was 2.77s, and the
average failure rate was 17%. The usability evaluation using
SUS resulted in an average score of 64.0, which is below
the general average of 68.1[18].

2) Discussion: In Experiment 2, the gestures defined by
participants ranged from simple Y-poses to more complex
ones. The ability to keep the average failure rate at 17% for
such a wide variety of gestures suggests the high degree of
freedom and versatility of our system.

However, the SUS score being below average indicates
that there are usability issues. In particular, low ratings were
prominent for item 2, “I found the system unnecessarily
complex,” and item 4, “I think that I would need the support
of a technical person to be able to use this system.” We
attribute this perceived complexity to two primary factors.
First, the large number of manipulable body parts and
parameters can be overwhelming for new users. Second, it
can be difficult to intuitively predict how adjustments to the
avatar’s posture and tolerance boxes will impact the final
recognition performance.

Therefore, future improvements will focus directly on
enhancing usability. Potential directions include simplifying
the interface by reducing the number of manipulation targets
and developing a function that automatically suggests an
appropriate tolerance range based on the defined posture.

V. CONCLUSIONS

In this paper, we have developed a novel interface that em-
powers users to contactlessly operate devices using their own
user-defined gestures. We demonstrated that the HoloLens2
serves as a visual and intuitive medium for defining not
only a gesture’s posture but also its precise tolerance ranges.
A key feature of our architecture is that following this
initial definition phase, device control is achieved through
gestures alone, eliminating the need for the user to wear an
HoloLens2.

Our evaluation experiments demonstrated the system’s ca-
pacity to recognize a diverse range of user-defined gestures.
Furthermore, the results confirmed that using these person-
alized gestures reduces the subjective workload associated
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with the control task. However, our findings also highlighted
clear usability challenges within the current gesture definition
process, pointing to a key area for future enhancement.

For future work, we plan to improve usability by in-
troducing few-shot learning for image-based recognition to
supplement the primary method and a dynamic threshold ad-
justment algorithm that adapts to user characteristics. These
enhancements aim to simplify the definition process and
further stabilize recognition accuracy. Furthermore, while the
current system only recognizes static postures, we plan to in-
corporate a global coordinate system in addition to the body-
relative one. This will enable the recognition of dynamic
gestures that consider the user’s position and orientation,
thereby enabling more complex interactions.
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