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Abstract— An automatic method for generating sewing pat-
terns corresponding to dress images is proposed in this study.
In garment production, the creation of sewing patterns, the
blueprints for garment construction, from design sketches is a
highly complex process that demands substantial expertise and
experience. Most existing studies focus on learning from entire
garments; however, they face the challenge of reduced shape
reproduction accuracy for small parts with diverse shapes,
such as collars and sleeves. The proposed method segments
a garment image into three main parts—bodice, sleeve, and
collar—and inputs each part into a specialized sewing pattern
generation model, enabling faithful reproduction of even small
and complex garment parts. A custom training dataset consist-
ing of garment images and their corresponding sewing pattern
images used in actual garment production is constructed. In
addition, a part segmentation model and part-specific GAN-
based sewing pattern generation models are developed. The
proposed method is capable of adapting to diverse garment
shapes and variations across parts, thereby enhancing both the
accuracy and efficiency of sewing pattern creation in garment
production workflows.

I. INTRODUCTION
In recent years, the fashion industry has placed increasing

emphasis on individuality, with many designers presenting
works that fully reflect their creativity. However, fashion
trends change almost every season, requiring the release
of new collections within limited time frames. Under such
tight schedules, it is often challenging for designers to fully
express their unique styles while maintaining high-quality
garment production.

In the following, we outline the standard procedure in-
volved in garment production. First, a fashion illustration
is created, which is then used as the basis for drafting
sewing patterns. Fabric is subsequently cut according to the
patterns and sewn to complete the garment. Sewing patterns,
often referred to as the “blueprints” of a garment, are
indispensable in apparel production. Creating these patterns
is a highly skilled task that requires considerable experience
and knowledge in dressmaking. In some cases, limitations
in a maker’s technical ability can hinder the creation of the
desired garment design.

Kato et al. [1] proposed a method that utilizes Generative
Adversarial Network(GAN) [2] to generate garment designs
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that retain the characteristics of a brand. They then evaluated
the difficulty of drafting sewing patterns from these generated
designs by professional pattern makers. Their findings re-
vealed that the difficulty of sewing pattern creation depended
more on the pattern maker’s knowledge and experience than
on the quality of the generated design itself. Given this
context, if sewing patterns—the most technically demanding
stage of garment production—could be automatically gener-
ated from garment images or fashion illustrations, it could
simplify the apparel manufacturing process and contribute to
improving working conditions in the fashion industry. Lijuan
et al. [3] proposed a method to predict sewing patterns from
garment images by combining 3D garment models with a
Transformer network [4]. However, the generated sewing
patterns often differed in format from those used in actual
dressmaking, and the shapes of the input garments were
not accurately reproduced. These limitations were attributed
to the lack of real sewing pattern data in the dataset and
insufficient consideration of garment shape diversity. In our
prior work [5], we explored sewing pattern generation from
garment images using deep learning models. The approach
involved merging all garment parts into a single sewing
pattern image and training the model to generate the entire
pattern at once. While this method performed reasonably
well for large, clearly shaped parts such as skirts, it failed to
accurately generate patterns for smaller and more geometri-
cally complex parts such as collars and sleeves. In the case of
collars, pattern generation was often unsuccessful altogether.
This is due to the fact that treating the sewing pattern as a
whole resulted in an abundance of features for the model to
learn, causing it to prioritize the more prominent features of
large, easily recognizable parts. Consequently, the accuracy
for small, complex parts decreased significantly. This study
constructs a custom dataset containing real sewing patterns
and segments garment images into three parts: bodice, sleeve,
and collar. A dedicated deep learning model is then built for
each part. In the proposed method, the input garment image
is first divided into these three parts, and each segmented
part is fed into its corresponding sewing pattern generation
model to produce the sewing pattern. This approach enables
the generation of accurate and practical sewing patterns that
faithfully reflect fine details of the garment’s shape, thereby
contributing to the efficiency of the garment production
process and supporting design work.
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Fig. 1: Flow of the proposed method

II. METHOD

A. Concept

This study aims to generate sewing patterns, which serve
as the blueprints for garment construction, from a single
garment image. To achieve this, the garment is segmented
into three major parts—bodice, sleeves, and collar—and a
dedicated sewing pattern generation model is built for each
part.

When sewing patterns for all garment parts are generated
in a single process, smaller and more geometrically complex
parts, such as sleeves and collars, often suffer from poor
shape reproduction. To address this issue, the proposed
method trains separate models for each part, enabling the
capture of part-specific geometric characteristics and allow-
ing the generated patterns to more faithfully reflect fine
structural details.

B. Overview

The processing flow of the proposed method is illustrated
in Fig.1. In this study, experiments are limited to sewing
pattern generation for one-piece dresses.

First, the input garment image is divided into three
parts—bodice, sleeves, and collar—using the Segment Any-
thing Model 2 (SAM2) [6]. Segmentation is performed based
on predefined seed points, and the corresponding regions are
extracted. The extracted part images are then placed at the
center of a black background image, converting them into a
format suitable for the input of the sewing pattern generation
model.

For the generation model, Pix2Pix [7] is adopted, and
independent models are constructed for each garment part.
Each model is trained using paired data consisting of the
input part image and its corresponding sewing pattern image.

During test, each part image is fed into its corresponding
sewing pattern generation model to produce the sewing
pattern for that part.

The following sections describe each of these steps in
detail.

(a) Clothing image (b) Part mask image

Fig. 2: Image used for segmenting clothing

C. Segmentation and Preprocessing

We first segment the garment image into three
parts—bodice, sleeves, and collar—using SAM2[6] with part
masks that indicate each region. An example of the part
segmentation mask used in this study is shown in Fig.2. This
mask allows stable region specification in SAM2[6] and en-
ables consistent extraction of the bodice, sleeves, and collar.
To highlight shape information relevant to pattern generation,
a Sobel filter is applied to extract contour features. After
segmentation, each part is cropped from the original image
and placed at the center of a 256×256 pixel black canvas,
ensuring a consistent input format for the Pix2Pix[7]-based
generation model.

D. Pattern Generation Models

In this study, we adopt Pix2Pix[7], a conditional genera-
tive adversarial network (Conditional GAN, CGAN) [8], to
generate sewing patterns corresponding to each garment part
image.

Pix2Pix [7] is specialized for image-to-image transfor-
mation tasks and is capable of learning from paired input
and output images. This makes it well suited to our task
of directly generating sewing pattern images (output) from
garment part images (input), as it can effectively leverage
edge information and shape features. Moreover, Pix2Pix
[7] preserves local correspondences between the input and
output images during transformation, which contributes to
improve reproduction of fine shape details.

The preprocessed part images were used as the input, and
the corresponding sewing pattern images were used as the
output. Separate Pix2Pix [7] models were constructed and
trained for each of the three garment parts: bodice, sleeve,
and collar. This approach enables each model to learn the
shape-specific characteristics of its respective part, thereby
improving the fidelity of shape reproduction.

The loss function was defined as the sum of the adversarial
loss, which encourages realistic outputs, and the L1 loss,
which promotes pixel-level consistency with the ground-truth
patterns.

Garment parts generally exhibit a high degree of shape
variation, and differences in shape often lead to significant
changes in the structure of the sewing patterns. When mul-
tiple shape variations are trained within a single model, the
model tends to prioritize frequently occurring or distinctive
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shapes in the training data, while the generation accuracy for
less common shapes decreases. This effect was especially
pronounced for collars, where inter-class shape differences
are substantial; training all collar types together resulted in
outputs biased toward certain shapes, making it difficult to
accurately reproduce the unique characteristics of each type.

To address this issue and simplify the task, we first
classify the input images by shape type and then perform
training with dedicated generation models for each category.
Specifically:

• Collar: Classify into one of five collar shape types
and input to the corresponding collar-specific generation
model.

• Sleeve: Classify as either short or long sleeve and input
to the respective generation model.

• Bodice: Classify based on the presence or absence
of a waistline seam and input to the corresponding
generation model.

This strategy allows each model to focus on a restricted set
of shape features (e.g., corner curvature, length, width), en-
abling the generation of sewing patterns that more faithfully
reflect the shape characteristics of the input garments.

E. Dataset Construction

In this study, we constructed a custom dataset consist-
ing of paired input images (garment images) and output
images (corresponding sewing pattern images) for training
the sewing pattern generation models. First, garment im-
ages containing diverse shapes for each of the three target
parts—bodice, sleeve, and collar—were collected from the
internet. Since the shape of a garment can vary significantly
depending on the wearer’s body shape and pose, the dataset
intentionally included images of garments with the same
design worn by different individuals, as well as images where
the wearer adopts various orientations and poses. This design
choice was intended to enhance the model’s ability to handle
shape diversity.

Next, as described in Subsection II-C, a Sobel filter is ap-
plied to the collected images to emphasize shape boundaries,
seams, wrinkles, and other details useful for sewing pattern
generation.

We then annotated the part regions using LabelMe [9], en-
closing each part with a polygon. Based on the annotated co-
ordinates, each part was cropped and placed at the center of a
black background image with a resolution of 256×256 pixel
to create the training input images. Furthermore, all cropped
part images were horizontally flipped for data augmentation,
effectively doubling the dataset size and improving model
generalization.

For the output images, sewing patterns corresponding to
the input garment images were designed. In the case of
collars, multiple variations (two to four) were prepared even
for the same collar type, ensuring greater shape diversity. The
produced sewing patterns were scanned, edited, and placed
at the center of a 256×256 pixel square image with a gray
background. The gray background was chosen to enhance the
visibility of differences between the input and output images

TABLE I: TYPE OF COLLARS, NUMBER OF SHAPE
VARIATIONS, AND NUMBER OF IMAGES

Collar Type Shape Variations Total Images
Shirt collar 4 100
Stand collar 3 80
Sailor collar 4 93
Flat collar 4 91
Shirt collar with band 2 98
Total Images 462

TABLE II: TYPE OF SLEEVES AND NUMBER OF
IMAGES

Sleeve Type Total Images
Long sleeve – straight 60
Long sleeve – tight 60
Long sleeve – puff 60
Long sleeve – flare 60
Short sleeve – straight 60
Short sleeve – puff 60
Short sleeve – flare 60
Total Images 420

in the image-to-image translation framework of Pix2Pix [7],
thereby potentially improving learning efficiency.

The final dataset consist of paired input and output images
for each part. Table I, II, and III summarize the shape
variations and number of images for each dataset category.

III. EXPERIMENT

A. Experimental Environment

The experiments were conducted on a PC equipped with a
single NVIDIA GeForce RTX 4080 GPU (24 GB VRAM).
Python 3.12 was used for implementation, with PyTorch 2.2
as the deep learning framework.

The dataset used in the experiments was custom-built for
this study, targeting dresses and dividing them into three
main parts: bodice, sleeves, and collar. For each part, paired
data consisting of an input image (garment image) and
a corresponding output image (sewing pattern image) was
prepared. The dataset was split into training, validation, and
test sets with a ratio of 8:1:1, and training was performed
independently for each part.

The training conditions for all models were set to a
batch size of 1, a learning rate of 0.0001, and a total of
1000 epochs, with models saved every 100 epochs. During
training, the transition of the loss function was recorded, and
among the saved models, the one with a comparatively low
loss value and judged by two experienced garment makers
to most faithfully reflect the shape of the input garment in
the generated sewing pattern was adopted as the final model.

B. Results of Garment Image Segmentation

This section presents the results of garment part segmen-
tation using SAM2[6] as a preprocessing step for sewing
pattern generation.

Fig.3 shows the input garment image and each part seg-
mented using the proposed method.

As shown in Fig3, the bodice, sleeves, and collar parts
were successfully and appropriately extracted.
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TABLE III: TYPE OF BODICES AND NUMBER OF
IMAGES

Bodice Type Total Images
A-line 66
Panel line 62
Box line 68
Waist seam (Gathered skirt) 70
Waist seam (Straight skirt) 65
Waist seam (Trapezoid skirt) 61
Total Images 392

(a) Input (b) Part mask image

(c) Collar (d) Sleeve (e) Bodice

Fig. 3: Segmentation results

C. Result of Sewing Pattern Generation

This section presents the output results of the sewing
pattern generation models for each garment part (collar,
sleeve, and bodice) and conduct a qualitative evaluation of
each model based on these results. Fig.4 and Fig.5 show
the generation results for collars, Fig.6 shows the results for
sleeves, and Fig.7 shows the results for bodices.

From Fig.4 to Fig.7, it can be observed that the models for
collars and sleeves generated sewing patterns that relatively
well reflect the shapes of the input images. In contrast,
for bodices, parts of the generated shapes were distorted,
indicating that accurately reproducing the input shapes was
more challenging compared to the other part-specific models.

D. Quantitative Evaluation

We evaluate shape accuracy using Intersection over Union
(IoU) [10], which measures the overlap between the gen-
erated pattern and the ground-truth pattern. IoU is defined
as:

IoU =
|A ∩B|
|A ∪B|

(1)

For each garment part, the IoU [10] values were calculated
over the entire test dataset, and their mean was obtained. The
results are presented in Table IV, V, and VI. The number of
test samples for each part was 51 for collars, 42 for sleeves,
and 42 for bodices.

(a) Input (b) Output (c) Groundtruth

Fig. 4: Collar pattern generation results 1 (sailor collar)

(a) Input (b) Output (c) Groundtruth

Fig. 5: Collar pattern generation results 2 (flat collar)

Among the parts, collars achieved the highest mean
IoU [10] (0.760), followed by sleeves (0.678) and bodices
(0.552). Collars and sleeves generally have more constrained
shapes and regions, making it easier for the model to generate
sewing patterns that reflect the input garment shapes. In
contrast, bodices exhibit greater shape diversity and are more
affected by decorative elements, leading to a reduction in
shape reconstruction accuracy. These tendencies and their
underlying causes will be discussed in detail in the following
section.

E. Qualitative Evaluation

In this section, we compare the conventional Single-
generator Model with the proposed Part-specific Multi-
generator Model to verify the effectiveness of the proposed
approach.

The qualitative evaluation was conducted on three garment
parts: bodice, sleeves, and collar, using the following two
criteria:

1) Recognizability: This metric evaluates whether the
generated pattern possesses an appropriate shape as the
intended garment part, such that an experienced garment
maker can immediately identify which part it represents. If
the shape is ambiguous or does not form a valid pattern
piece, recognizability is judged to be low.

2) Shape Accuracy: For parts judged recognizable, the gen-
erated pattern was compared with the ground-truth sewing
pattern corresponding to the input garment. The evaluation
focused on whether the contour shape, curvature, and pro-
portional balance were appropriately reproduced. An expe-
rienced garment maker assessed how well the characteristic
features of the input garment were preserved.

The evaluation results are summarized in Table VII and
Table VIII.

From Table VII, the Single-generator Model shows mod-
erate recognizability for the bodice and sleeves, but fails to
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(a) Input (b) Output (c) Groundtruth

Fig. 6: Sleeve pattern generation results

(a) Input (b) Output (c) Groundtruth

Fig. 7: Bodice pattern generation results

generate a valid collar shape. In contrast, the Part-specific
Multi-generator Model achieves 100% recognizability for all
parts, indicating that separating the garment into components
improves the stability of part-wise shape generation, partic-
ularly for parts with distinctive geometric structures such as
collars.

In Table VIII, the Single-generator Model could not be
evaluated for collar shape accuracy because the generated
collar was not recognizable as a valid pattern. The Part-
specific Multi-generator Model, however, successfully repro-
duces the collar shape with a shape accuracy of 72.5%. Shape
accuracy for sleeves is also improved, suggesting that local
contour and length relationships are better preserved when
each part is modeled independently.

From Table VII and Table VIII, it can be observed that
the single-generator model fails to sufficiently learn the
local geometric characteristics of each part, and consequently
tends to collapse when generating components with strong
shape constraints, such as collars and sleeves.In contrast, the
proposed method employs independent generators for each
garment part, allowing the model to effectively learn local
shape characteristics. As a result, it can produce stable and
sewing-ready pattern shapes.

Next, we visually evaluate and compare the pattern shapes
generated by each method. Fig.8 shows the input garment
image, the patterns generated by each model, and the ground-
truth sewing patterns.(a) is the garment image used as the
input.(b) shows the ground-truth sewing patterns correspond-
ing to (a).(c) is the pattern generated by the conventional
single-generator model.(d) shows the patterns generated by
the proposed part-specific model, in which the independently
generated parts are combined into a single image.

As shown in Fig.8, the proposed method is visually con-
firmed to be effective in reproducing the shapes of individual
garment parts. First, the single-generator model (c) failed to

TABLE IV: IoU RESULTS FOR COLLAR TYPES

Collar Type Mean IoU
Sailor collar 0.818
Shirt collar 0.738
Shirt collar with collar back 0.824
Stand-up collar 0.630
Flat collar 0.789
Overall Average 0.760

TABLE V: IoU RESULTS FOR SLEEVE TYPES

Sleeve Type Mean IoU
Short sleeve 0.660
Long sleeve 0.697
Overall Average 0.678

generate a valid collar shape, whereas the proposed model
(d) successfully reconstructed a recognizable collar pattern.
In addition, the sleeves generated by the single-generator
model exhibited distortion and lost bilateral symmetry, while
the proposed model generated two sleeves with stable and
symmetric shapes.

On the other hand, for the bodice, the skirt shape produced
by the proposed model (d) differs from the ground-truth
pattern (b), and the single-generator model (c) generated a
shape closer to the correct pattern.

F. Discussion

1) Garment Segmentation: In the proposed method, the
garment images were successfully segmented into three
parts—bodice, sleeve, and collar—with sufficient accuracy
for use as inputs to the sewing pattern generation models.
However, the segmentation process required additional steps
such as creating auxiliary images and manually setting seed
points, which introduced extra preprocessing effort. Future
work should focus on developing a more automated and
efficient part extraction method that maintains segmentation
accuracy while reducing manual intervention.

2) Sewing Pattern Generation Models: According to the
IoU [10] evaluation results, the collar and sleeve achieved
relatively high shape consistency, whereas the bodice exhib-
ited lower values compared to the other two parts.

The high performance of the collar and sleeve models
can be attributed to the relatively limited spatial extent of
these parts and their lower susceptibility to shape variation
caused by the wearer’s posture. These characteristics make
it easier for the generation models to learn and reproduce
edge and contour features accurately. In particular, for the
collar, prior fine-grained classification into five distinct shape
types, followed by training dedicated models for each type,
is considered to have contributed to improved shape fidelity.

In contrast, the lower IoU [10] for the bodice may be
explained by the following factors:

• High shape variability : The bodice is heavily influenced
by the wearer’s body shape and posture, resulting in
greater variability compared to other parts. This diver-
sity may have made it more difficult for the model to
learn consistent shape features.
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TABLE VI: IoU RESULTS FOR BODICE TYPES

Bodice Type Mean IoU
Bodice skirt 0.649
Bodice dress 0.455
Overall Average 0.552

TABLE VII: RECOGNIZABILITY COMPARISON

Method Bodice [%] Sleeves [%] Collar [%]
Single-generator model 81.8 80.0 0.0
Proposed model 71.4 100 100

• Large area and high information density : The bodice
occupies the largest area of a garment and often contains
numerous non-essential visual elements such as deco-
rative patterns, making it more challenging to extract
accurate shape features and thus reducing generation
accuracy.

As potential improvements, preprocessing techniques that
remove internal patterns or decorations and reconstruct oc-
cluded regions could be introduced. Furthermore, consid-
ering that garments inherently possess a three-dimensional
structure, reconstructing the 3D garment shape from the input
image prior to pattern generation is a promising direction.
Such approaches could enhance the clarity of structural
features, thereby enabling more accurate and practically
applicable sewing pattern generation.

IV. CONCLUSION

In this study, we proposed a method for automatically gen-
erating sewing patterns corresponding to the bodice, sleeves,
and collar from garment images. First, by employing SAM2
[6] in combination with part segmentation mask images, we
performed part segmentation and preprocessing to create in-
put data suitable for sewing pattern generation. Subsequently,
by constructing a dedicated generation model for each part,
we demonstrated that the proposed approach can produce
sewing patterns that more faithfully reflect the shapes of
smaller parts—something that conventional methods, which
learn all garment parts jointly, find it difficult to achieve.
Experimental evaluation showed that the proposed method
achieved high IoU [10] values for the collar and sleeves,
whose shapes tend to be relatively consistent. In contrast, for
the bodice—whose shape is more affected by the wearer’s
posture, body type, and occlusion—a decrease in generation
accuracy was observed.

For future work, to improve shape reproducibility across
all parts, we plan to incorporate image processing tech-
niques that remove patterns or decorations within the part
regions and compensate for occlusions. Moreover, we will
investigate methods that reconstruct the garment’s three-
dimensional structure prior to predicting its sewing patterns.
While existing studies have attempted to reconstruct garment
3D structures for sewing pattern generation, they have not yet
addressed the challenges of handling diverse shapes or pro-
ducing sewing patterns suitable for practical use. Therefore,
our future goal is to develop a method that overcomes these
limitations, enabling the generation of sewing patterns that

TABLE VIII: SHAPE ACCURACY COMPARISON

Method Bodice [%] Sleeves [%] Collar [%]
Single-generator model 53/0 80.0 –
Proposed model 42.9 54.8 72.5

(a) Input (b) Groundtruth

(c) Single-generator model (d) Proposed model

Fig. 8: Comparison of the single-generator model, Proposed
model, and the ground-truth sewing patterns.

can adapt to a wide variety of shapes and be directly applied
in real garment production.
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