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Road Surface Estimation and Obstacle Detection
Using Fisheye Stereo Camera and Monocular Depth Estimation
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Abstract—In this study, we propose a method for road
surface estimation and obstacle detection using a fisheye stereo
camera. In obstacle detection using stereo cameras, obstacles
are detected based on distance information obtained through
stereo matching. However, there are regions where stereo
matching cannot obtain reliable disparity. Moreover, direct
obstacle detection using deep learning cannot detect obstacles
that are not included in the training data. Therefore, we first
detect obstacles on the road surface using the relative depth
obtained from monocular depth estimation. Then, by focusing
only on the obstacle regions for distance measurement, we aim
to detect all obstacles. Experiments demonstrate the ability to
detect only obstacles with high accuracy.

I. INTRODUCTION

Recent years have seen remarkable advancements in au-
tonomous driving technologies, and numerous cases have al-
ready reached practical implementation stages[1], [2]. These
systems require situational awareness to detect surrounding
obstacles, primarily relying on depth information. Represen-
tative sensors used to obtain such depth information include
stereo cameras, LiDAR, and sonar. However, conventional
sensors suffer from issues such as limited measurement range
and low angular resolution, making it difficult to detect thin
or laterally positioned obstacles. While some approaches
combine multiple sensors or mechanisms to extend the
measurable range, this often results in constraints on sensor
placement, decreased maintainability, and increased costs.

In this study, we focus on fisheye stereo cameras. Fisheye
cameras offer an extremely wide field of view, approxi-
mately 180°, which allows for a wide area to be measured
using a single device. Furthermore, their large depth of
field ensures that objects remain relatively sharp regardless
of distance, which is advantageous for image recognition.
Given applications such as camera sensors for autonomous
parking systems or mobile robots, fisheye stereo cameras
are well-suited for wide-range measurements. In previous
research, Ohashi et al. proposed converting fisheye images
into equirectangular images to reduce distortion and facilitate
3D reconstruction[3]. However, this approach suffers from
decreased distance estimation accuracy due to increased
mismatches caused by performing template matching along
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curved epipolar lines. Iida et al. addressed this by introduc-
ing a pseudo-bilateral filter that fuses region-based stereo
matching with feature-based Structure from Motion (SfM),
significantly improving accuracy by incorporating temporal
image sequences[4]. Nevertheless, the approach faces limi-
tations in processing speed due to high computational load.
To overcome this, Arai et al. proposed a vertically arranged
fisheye stereo camera setup, which linearizes epipolar lines
and enables simplified stereo matching for improved distance
estimation accuracy[5]. However, for obstacle detection pur-
poses, it is not necessary to perform depth estimation across
the entire measurement range. Sakuda et al. proposed an
obstacle height estimation method that fits multiple planes to
a disparity image, enabling flexible road surface estimation
without strict planar constraints[6]. However, due to recursive
processing involved in road surface estimation, the method
struggles with real-time obstacle detection. Additionally, if
the 3D reconstruction contains errors, the road surface itself
may be falsely detected as an obstacle. To address this,
Chikugo et al. proposed a method that incorporates intensity
information to detect only obstacles while avoiding misde-
tection of road surfaces[7], [8]. However, since the method
re-detects obstacles using high intensity values outside the
previously estimated 3D obstacle region, it may falsely detect
road markings or sunlit areas as obstacles[7]. Moreover,
since the method uses intensity values from overlapping
regions between image edges and 3D obstacle regions, it
may fail in cases where road markings are misdetected or
the obstacle lacks texture[8]. Therefore, we aim to develop
an obstacle detection method that is robust to textureless
environments by leveraging monocular depth estimation to
detect obstacles on the road surface and conducting 3D
measurements focusing only on these detected regions.

II. RELATED WORK

Methods for understanding surrounding environments can
be broadly categorized into two approaches: those that de-
tect obstacles based on estimated road surfaces, and those
that utilize color or appearance features. One commonly
used technique in the first approach is UV-disparity-based
detection [9], [10]. However, these methods rely on stereo
matching to obtain disparity information. As a result, they
may fail to detect textureless obstacles due to the lack of
sufficient matching features. Seki et al. proposed an approach
using a projection matrix to infer obstacle locations [11].
Nevertheless, their method assumes a single planar surface,
which leads to issues when dealing with scenes where road
inclination varies. In the second approach, methods using
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Fig. 1: The flow of the proposed method

appearance features, deep learning-based approaches have
become prominent [12], [13], [14]. While these methods
achieve high performance in well-trained scenarios, they of-
ten suffer from limitations in generalization to environments
different from the training data. Moreover, they tend to lack
explainability, which can be a drawback in safety-critical
applications.

III. PROPOSED METHOD
A. Overview

The proposed method is illustrated in Fig. 1. First, fisheye
images are captured using two fisheye cameras, and they
are converted into equirectangular images to reduce distor-
tion. Next, relative depth information is estimated using a
monocular depth estimation model, MiDaS [15]. Based on
the obtained relative depth, a V-intensity image is generated
to coarsely estimate the road surface. Here, V-intensity
replaces the disparity in V-disparity [16] with brightness.
Subsequently, stereo matching is applied only to points with
high confidence, and the scale between MiDaS depth and
stereo depth is adjusted using these points. Finally, obstacles
on the road surface are detected, and depth estimation is
performed only within the identified obstacle regions.

B. Image Acquisition

Fisheye images captured by fisheye cameras exhibit char-
acteristic distortion. To reduce this distortion, the images
are converted into equirectangular projections [3]. In stereo-
based depth estimation using two cameras, it is generally
assumed that the optical axes are perpendicular to the base-
line for simplification. However, in practice, slight misalign-
ments occur during camera installation, resulting in deviation
from perfect orthogonality. Therefore, stereo rectification is
performed using a checkerboard pattern to correct for these
misalignments [5]. The rectification parameters for parallel
alignment were obtained in advance using a checkerboard
pattern.

C. Monocular Depth Estimation

When using V-disparity based on disparity maps obtained
from conventional stereo matching, accurate estimation of
road surfaces and detection of obstacles becomes difficult
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(a) Input image (b) Normalized depth

Fig. 2: Results of MiDaS

(@ (b)
Fig. 3: V-intensity corresponding to Fig. 2. (a) V-intensity

image, (b) Road region extracted from the V-intensity image,
(c) Road region (shown in white) overlaid on the input image.
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in the presence of measurement errors or in textureless
environments. In addition, processing speed is reduced due
to the inclusion of unnecessary regions in the calculation.
To address these issues, we utilize MiDaS, a monocular
depth estimation model that can provide reasonably accu-
rate environmental understanding. The result obtained using
MiDaS for Fig. 2(a), is presented in Fig. 2(b). Although
MiDaS performs processing across the entire image, it offers
advantages over traditional stereo matching, such as faster
inference and reduced sensitivity to small noise.

D. V-intensity

The relative depth values obtained using MiDaS are nor-
malized to a range of O to 255. Therefore, the relative
depth can be treated as image intensity. Based on this, we
generate a V-intensity image, which represents the frequency
of intensity values along the vertical axis of the relative range
image, as shown in Fig. 3(a). In Fig. 3(a), the diagonal region
corresponds to the road surface, while the vertical structures
represent obstacles: the sky and distant background objects
such as buildings. To extract the road surface region, we
focus on the bottom of the diagonal region and define the
area within a certain threshold from the bottom as the road
surface. If the value exceeds the threshold, the corresponding
region is assumed to be of similar size as neighboring road
regions. The resulting extracted road surface is shown in
Fig. 3(b). Fig. 3(c) shows the extracted road surface region
projected back onto the input image.

E. Scale Adjustment via Stereo Matching

Since the depth value output by MiDaS is relative, it is
not possible to directly obtain the absolute distance from
the camera to the obstacle. Therefore, we perform scale
adjustment by aligning the relative depth obtained from
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Fig. 4: Scale adjustment between stereo and MiDaS

MiDaS with the reliable absolute depth values obtained
through stereo matching, focusing particularly on edge re-
gions. If stereo matching is applied to the entire image,
noise in texture-less regions can interfere with accurate scale
estimation. Additionally, full-image processing can signifi-
cantly reduce the processing speed. To address these issues,
stereo matching is performed only at the points where edges
in the relative range image and the input image overlap.
Obstacles are expected to generate edges in the relative
range image. Furthermore, edge-adjacent regions are likely to
yield reliable depth through stereo matching. For this reason,
we use edge information from the relative range image.
Specifically, only edge pixels that are in contact with the
estimated road surface are used for scale adjustment.

The edge image of the relative depth that contact with
the road and the edge image used for stereo matching
are shown in Fig. 4(a) and Fig. 4(b), respectively. Stereo
matching is performed using block matching. In addition,
texture filters are applied to reduce noise, and mismatches are
handled appropriately. Mismatch correction is based on the
disparity between corresponding pixels in the stereo image
pair. Stereo matching is applied only to the overlapping
edge points where the disparity between the relative depth
edge and the input image edge is below a certain threshold.
The result of edge-focused stereo matching is shown in
Fig. 4(c). To estimate the scale, the average ratio between
the stereo-matched absolute depth and the corresponding
MiDaS-relative depth is computed across all matched pixels.
This scale factor is then multiplied with the relative depth
to convert it into absolute distance. The result of the scale-
adjusted depth is shown in Fig. 4(d). In both Fig. 4(c) and
Fig. 4(d), closer distances are shown in red, while farther
distances appear in blue. In Fig. 4(d), some regions near the
top of the image exhibit incorrect distance estimates, which
are likely caused by the limited reliability of stereo matching
in textureless or distant areas, resulting in inaccurate scale
adjustment.
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Fig. 5: Obstacle detection

F. Obstacle Detection

To estimate the obstacle regions, Fig. 3(c) and Fig. 4(b)
are used. If the number of pixels in Fig. 4(b) exceeds a
threshold, the region between the edge and the road surface
is considered an obstacle region. If the number of pixels is
below the threshold, a similar process is performed using
Fig. 3(c) and Fig. 4(a). Furthermore, if the number of pixels
in Fig. 4(a) is also below the threshold, the non-road region
in Fig. 3(c) that falls within the area in Fig. 4(d) where
the distance is determined (indicated in color) is considered
the obstacle region. The detected obstacle region from this
process is shown in Fig. 5(a). However, in the lower right of
Fig. 5(a), a road area is mistakenly detected as an obstacle
region. Therefore, noise removal is applied to each detected
obstacle region using the neighboring road parameters. These
road parameters are estimated using the least squares method
based on the scaled MiDaS depth. By applying the road
plane estimated from the obtained road parameters, the
road surface around each obstacle region is determined, and
regions that are farther than a threshold from this road plane
are classified as obstacles, while others are considered part
of the road and removed from the obstacle regions. This
approach enables robustness to sloped surfaces. The result
after this processing is shown in Fig. 5(b), where the road
region mistakenly detected as an obstacle in the lower right is
successfully removed. After noise removal, the scaled MiDaS
depth and the brightness of the input image near the obstacle
region are analyzed, and if they are similar, those points are
added to the obstacle region. The result of this process is
shown in Fig. 5(c). Finally, clustering is performed on the
obstacle regions by considering the connectivity in the binary
image, as shown in Fig. 5(d).

G. 3D Measurement Focused on Obstacles

For each clustered obstacle, the distance from the camera
and the height of the obstacle are estimated. To estimate
the distance from the camera, the distances obtained from
stereo matching and MiDaS are compared. Then, the height



is estimated using the distance from the camera and the road
surface parameters. For the stereo-based distance, Fig. 4(c)
is used. From Fig. 4(c), some points, five in the following
experiments, with the shortest distances are selected, and
their average is taken as the stereo-based distance from
the camera. For the MiDaS-based distance, Fig. 4(b) and
Fig. 4(d) are used. From the edge areas shown in Fig. 4(b),
some points with the shortest distances are selected, and
their average is taken as the MiDaS-based distance. When
comparing the two distances, if the difference between them
is below a threshold, it is considered that both have high
reliability. In such cases, considering safety, the smaller of
the two distances is selected. This is based on the idea
that selecting the closer distance allows for faster response
in obstacle avoidance. If the difference between the two
distances exceeds the threshold, it is assumed that at least one
of them has low reliability. Since the stereo-based distance
is calculated as the average of some points, it may contain
noise due to mismatches, leading to a large difference from
the MiDaS-based distance. On the other hand, since the
MiDaS-based distance uses edge regions from Fig. 4(b) and
tends to contain less noise, its reliability is considered higher
when mismatched points are included in the stereo match-
ing. Therefore, if the difference between the two distances
exceeds the threshold and the stereo-based distance is shorter
than the MiDaS-based distance, the MiDaS-based distance is
adopted as the final distance from the camera.

To estimate the height of an obstacle, the heights of the
upper edge points obtained from Fig. 4(b) are calculated,
and their average is taken as the height of the obstacle. If
the equation of the road surface plane is given as

z=ax+by+c, €))

then the height H of a point (xo,yo,z0) from the road surface
can be computed by the following equation:

laxo + byo + ¢ — 20|
Va@+pr+1
Here, a, b, and c represent the road surface parameters. These

parameters are obtained using the least squares method based
on the distances in the vicinity of each obstacle region.

H =

€y

IV. ACCURACY EVALUATION EXPERIMENT
A. Experimental Conditions

In this experiment, a virtual environment was created
using the 3DCG software Blender. We verified whether the
proposed method can detect obstacles without misidentifying
the road surface. Additionally, we evaluated the error in
the estimated distance from the camera to the obstacle,
the error in obstacle height, and the processing speed. In
Blender, the Cycles render engine was used, and the lens
was set to an equirectangular panoramic projection. The
resolution of the camera was set to 1048 x 1048 pixels, with
both horizontal and vertical fields of view set to 180°. The
baseline length between the two cameras was set to 0.072 m.
Since the images obtained from Blender are ideal, both the
internal and external camera parameters can be assumed to be
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Fig. 6: Overview of the experimental setup
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Fig. 7: Experimental conditions

error-free. The experimental environment is shown in Fig. 6
and Fig. 7. Fig. 6 shows the overview of the experimental
setup, while Fig. 7 presents the experimental conditions. The
elevation angle in the image was fixed at 0°, and square
block was placed at azimuth angles of —60°, 0°, and 60° as
measurement positions. The block had a side length of 1 m,
and the distance from the camera to the block was measured
at five locations: 1 m, 3 m, 5 m, 7 m, and 9 m.

B. Experimental Results

The experimental results are shown in Tables I to IV.
Tables I to III present the errors in the estimated distance
from the camera to the obstacle and in obstacle height at
azimuth angles of —60°, 0°, and 60°, respectively. Table IV
shows the average processing time for each processing step
and the overall average processing speed.

From the results, it can be confirmed that in all conditions,
the proposed method was able to detect the target block
without misidentifying the road surface. The error in the
estimated distance from the camera to the obstacle ranged
from a minimum of 0 m to a maximum of 5.90 m. For
example, in cases such as the 1 m distance at 0° azimuth
and the 9 m distance at 0° azimuth, the estimation error
was 0 m, indicating high accuracy. However, in some cases,
the error exceeded 1 m, showing that the method was not
robust under all conditions. This is likely due to the distance
estimation method described in Section III-G. The method
calculates the average of the five closest distance values
obtained by stereo matching. Therefore, if even one of those
points has a large error, the final average error will also be
large. Furthermore, since MiDaS was trained on perspective
projection images rather than equirectangular images, there
is a possibility of increased error when the distance from the
camera is estimated using MiDaS.



TABLE I: Distance and height errors at 0° azimuth
|| Errorofdistancelml | Errorof height im|_|

Im 0.00 -0.19
3m -0.02 -0.45
Sm -0.20 -0.19
Tm 1.01 -0.78
9m 0.00 0.11

TABLE II: Distance and height errors at —60° azimuth
[ | Errorotdstancelnl | Brrorofhghtiml |

Im 0.09 -0.45
3m -0.48 -0.29
5m -0.20 -0.45
7m -1.00 -0.76
9m -0.99 -0.90

TABLE III: Distance and height errors at 60° azimuth
[ | Errorofdistanceiml | _Errorof height [m] _|

Im 0.62 0.63
3m -0.03 -0.44
5m 5.90 -0.55
7m 1.01 -0.84
9m -0.99 -0.88

TABLE IV: Processing speed

| Processingspeed [fps]

MiDaS 7.20
V-intensity 10.2
Scale adjustment 5.79
Obstacle detection 92.1
3D measurement 193
All 2.35

The error in obstacle height ranged from a minimum
of 0.11 m to a maximum of -0.90 m. While the method
showed good accuracy in some cases, in most cases the
errors were relatively large. This is likely because the road
surface parameters near the obstacle were estimated using
least squares based on the distance values at the lower part
of the image. In detection results like the one shown in
Fig. 8, the distance values within the obstacle region are also
used to estimate the road surface, which prevents accurate
estimation. As a result, the estimated obstacle heights tend
to be lower than the actual heights in most situations.

According to Table IV, the overall processing speed
was 2.35 fps, which is insufficient for autonomous driving
applications. The most time-consuming process was scale
adjustment, particularly the stereo matching step within that
process.

V. CONCLUSION

In this paper, we proposed an obstacle detection method
focusing on obstacles on the road surface using a fisheye
stereo camera and the monocular depth estimation model Mi-
DaS. The experiments demonstrated that obstacles could be
detected without misidentifying the road surface. However,
sufficient accuracy in measurement and processing speed
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Fig. 8: Detection result at 7m and 0°

were not achieved.

As future work, we plan to conduct experiments in tex-
tureless environments and real-world scenarios. We will also
perform comparative experiments with conventional meth-
ods. Furthermore, by incorporating feature points into stereo
matching, we aim to improve both measurement accuracy
and processing speed.
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