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Abstract— This paper presents a novel method to control
an underactuated hand by using only a monocular camera,
not using any internal sensors. In food factories, robots are
required to handle a wide variety of foods without damaging
them. To accomplish this, the use of underactuated hands
is effective because they can adapt to various food shapes.
However, if internal sensors such as tactile sensors and force
sensors are used in the underactuated hands, it may cause
a problem with hygiene and require complicated calibration.
Moreover, if external sensors such as cameras are used, it
is necessary to grasp foods without damaging them by using
external information such as images. In our method, to tackle
these problems, a camera is used as an external sensor. First,
contact between the hand and the object is detected by using
the contours of both, obtained from a camera image. Then,
to avoid damaging the object, the following information is
extracted from camera images and observed: the centroid of
both the hand and object, the deformation of the object, and the
occlusion rate of the hand. Furthermore, to prevent the object
from dropping while the robotic arm is in motion, the distance
between the centroid of the hand and the object is calculated.
The experiments were conducted using twelve different food
items.

I. INTRODUCTION

Research on the use of robots to handle deformable objects
is advancing [1]. One example of a deformable object is
food. Due to variations in shape and hardness based on
different types of food, handling food with robots can be
challenging. Therefore, in food factories, human labor is
necessary. However, in aging societies like Japan, there is a
concern about declining productivity due to labor shortages.
Therefore, robotic automation such as robot manipulation in
food factories is attracting increasing attention [2], [3].

In food manipulation, the following four factors are con-
sidered crucial: (i) handling various types of foods, such as
brittle and soft foods; (ii) ensuring hygiene; (iii) enabling
easy installation in factories; and (iv) avoiding damage to
the food items.

To fulfill (i), an underactuated hand, which can adapt to the
object’s shape, is used. Since the underactuated hand directly
touches the food items, it is important to ensure hygiene as
mentioned in (ii). However, when using internal sensors like
tactile or force sensors within the hand to manipulate objects,
it can be difficult to keep the hand clean because cleaning it
with heat or water may cause the sensors to fail. Moreover,
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if internal sensors are used on the hand’s surface, repeated
contact with the object may break the sensors, which can
pose a risk of foreign-object contamination. The use of
internal sensors affects not only (ii) but also (iii). When
using any sensors, calibration is necessary. If a large number
of hands equipped with internal sensors are introduced into
multiple factories, calibration will be required for each hand,
and the system installation may take a long time. To fulfill
(ii) and (iii), it is better to use external sensors, such as
cameras, instead of internal sensors. Humans use hands
to grasp objects. However, they use information obtained
through eyes to determine if an object is not too crushed or
if it has been dropped. Thus, the robot can be controlled to
satisfy (iv) by using images from the camera, just as humans
use their eyes. When using a camera, markers are often
used to observe the hand pose and the object’s deformations.
However, if markers are attached to the hand or the object, it
may cause a problem with (ii) and (iii). Therefore, the object
must be grasped without any markers.

An additional difficulty in food grasping is that foods have
different amounts of hardness (i.e., there are brittle and soft
foods). If the hand does not grasp with the force appropriate
to the hardness, the object may be dropped or damaged.
Therefore, it is necessary to detect whether an object is hard
or soft and to grasp it without damaging or dropping it.

In this paper, we propose a method to control an under-
actuated hand by using only a monocular camera, without
any internal sensors or markers. To grasp the object without
damage, both the hand and the object are observed via
an image. First, contact between the hand and the object
is detected based on the contours of both. Next, to avoid
grasping with excessive force, how the hand is moving and
how the object is deforming are continuously observed via
the image using four indexes: the hand’s centroid, the object’s
centroid, object deformation detected from the optical flow,
and the occlusion rate of the hand. Furthermore, to prevent
the object from dropping during the robotic arm motion, the
distance between the centroid of the hand and the object
is observed via an image. The effectiveness of the proposed
method is verified through experiments using real foods. The
novelties and contribution of the proposed method are as
follows:

• To achieve easy installation of the system and hygienic
handling of various types of food, an underactuated
hand is controlled using only a monocular camera as
an external sensor.

• An object is grasped without damaging it, even without
its hardness information, by observing the movement
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of the underactuated hand and the deformation of the
object.

II. RELATED WORKS

A. Robotic hand

To handle a wide variety of food items such as brittle and
soft foods, robotic hands with high adaptability are being
developed. One example is a soft hand [4]–[7]. This hand is
made of soft material and has a high degree of freedom,
allowing it to grasp objects gently while adapting to the
object’s shape. Another example is an underactuated hand
[8]. This hand has fewer degrees of freedom compared to
the soft hand, but it can also adapt to the object’s shape. In
this paper, an underactuated hand is used as a basic study of
object grasping by a soft hand.

B. Sensor

Many studies of object grasping using soft hands or
underactuated hands are using internal sensors. For example,
tactile sensors or force sensors have been attached to the
surface of the hand for force feedback control [9]–[12].
These studies may be able to prevent the hand from grasping
objects with excessive force because contact force can be
obtained from sensors mounted on the robot hand. However,
the problem is that the force can only be measured in the
contact area. When the contact area is small, only local
forces and deformations of the object can be detected, and
the deformation of the object may not be fully detected,
which may result in damage to the object. In addition, several
studies used cameras as internal sensors called vision-based
tactile sensors [13]. She et al. [14] and Liu et al. [15]
installed a camera inside the hand to perform hand-posture
estimation and object classification. Other studies have used
vision-based tactile sensors with parallel hands [16], [17].
These methods can acquire not only the hand’s information,
such as its posture and grasp position, but also details about
the object itself, such as its type and shape. However, in the
case of grasping food, food particles or dirt may adhere to
the hand, making it impossible to acquire information from
the camera.

Furthermore, as mentioned above, using internal sensors
poses challenges for maintaining hygiene because it is dif-
ficult to clean the hand with heat or water. Additionally,
repeated contact of the sensor with the food may cause sensor
parts to be mixed in with the food. Another concern is that
it takes time to introduce the hand into food factories. Since
all sensors should be calibrated, if multiple sensors are used
for a single hand, and a number of such hands are used in a
factory, the time required for calibration becomes significant.

Cameras are often used as external sensors, the counterpart
to internal sensors. Barrie et al. [18] used deep learning
to estimate the grasping force based on the deformation of
the soft gripper obtained from the image. Grady et al. [19]
proposed a method that uses images and deep learning to
estimate the pressure distribution when a soft hand contacts
a horizontal plane, such as desk, which can be used to
help grasp the object. However, these methods using deep

Fig. 1. Flow chart of the image feedback control process.

learning have the problem of needing a prepared dataset
for the specific hand. Morgan et al. [20] recognized the
interaction between the hand and the object by attaching
markers to them. Nguyen et al. [21] attached markers to the
object to detect its deformation. These methods are useful
for recognizing the state of both the hand and the object,
respectively, from an image. However, since it is impossible
to put a marker on the food, it is important to control the
hand without attaching any markers to the hand or the object.

As described above, the challenge is to handle food
without using internal sensors or markers.

III. METHODS

A. Assumption

In this research, a two-finger underactuated hand is used.
No internal sensor is attached to the hand, only a monocular
camera is used as an external sensor. Brittle and soft foods
are used, which are challenging for a robotic hand to grasp
without causing any damage. Moreover, to consider cases
where the same type of food has different hardnesses, no
information about the object’s hardness is known in advance.
The hand is controlled with actuators, such as servo motors
and pneumatic actuators. The hand closes at a constant speed
from an open position and grasps the object in place. During
this control process, visual feedback control is performed.

B. Overview

In our method, three types of detections for the image
feedback control of the underactuated hand are introduced:
contact detection, grasp detection, and grasp detection dur-
ing arm control. Refer to the flow chart in Fig. 1 to
understand the step-by-step process of the method. In the
first step, contact detection is executed. Here, the contours
of both the hand and the object are obtained from an
image. Then, contact is detected based on the overlap of the
contours. In the next step, grasp detection is performed. To
grasp an object without excessive force to avoid damaging
it, IfGs (Indexes for Grasping) are used. IfGs contain the
following four indexes: centroid of the hand, centroid of the
object, deformation of the object, and occlusion rate of the
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hand. Using IfGs, it is observed from the image how the
hand moves and how the object is deformed. After grasp
detection, the robotic arm is controlled to start moving.
Finally, grasp detection during arm control is performed
to detect the slipping and rotation of objects during the
movement of the robotic arm. If the object is about to slip
during the arm movement, the grasping force of the hand is
increased to avoid dropping the object. With these three types
of detection, the underactuated hand can grasp objects of
various hardnesses and sizes without dropping or damaging
them. In the following sections, we will provide details on
the three types of detections.

C. Contact detection

The robotic hand starts in the open state. The contact
between the hand and the object when the robot hand is
closed is detected from an obtained image. First, the input
image as shown in Fig. 2 is converted to a Hue Saturation
Value (HSV) image. Next, as shown in Fig. 3, the regions of
the hand and the object are obtained from the HSV image
using the threshold process. Then the contours of the hand
and the object are obtained from Fig. 3. In Fig. 4(a), the
contours of the hand and the object are represented by blue
and red lines, respectively. As the hand closes in Fig. 4(a), the
contours of the hand and the object overlap. In Fig. 4(b), the
pixels where the lines overlap are highlighted in magenta.
If the number of overlapped pixels exceeds the threshold,
contact between the hand and the object is detected. After
contact is detected, the system proceeds to grasp detection.

D. Grasp detection

In this section, whether excessive grasping force is being
applied to the object is detected so as not to damage the
object, regardless of its hardness. When grasping a hard
object that does not deform, the underactuated hand comes
to a halt after contacting the object. On the other hand, when
grasping a soft object that deforms after contact, the hand
may continue to close its fingers. In this way, the hardness
of the object affects how the hand can move and how the
object can deform after contact. Therefore, for both brittle
and soft objects, it is important to observe the hand and the
object to avoid damaging the object.

Here, for observation, IfGs (Indexes for Grasping) are
used to detect excessive grasping force. IfGs contain the
following four indexes: the movements of both the hand and
the object (IfG1 and IfG2), object deformation (IfG3), and
the occlusion rate of the hand (IfG4). IfG1 and IfG2 are used
to consider the grasping of brittle objects, IfG3 and IfG4 are
used to consider the grasping of soft ones. Since the hardness
of the object is unknown, all the IfGs, IfG1 through IfG4,
are calculated for each object. If IfG1 is smaller than the
threshold or the other IfGs exceeds the given threshold, the
hand is controlled to stop closing to prevent the crushing
of a brittle object or collapsing of a soft object. After grasp
detection, the system proceeds to grasp detection during arm
control.

Fig. 2. Images captured by a
monocular camera.

Fig. 3. The regions of the hand and
the object extracted from Fig. 2.

(a) Before contact. (b) After contact.

Fig. 4. Contact detection. The magenta colored pixels represent the contact
of the robotic hand and the object.

IfG1: centroid shifts in the robotic hand When grasping
a brittle object that has a hard surface, the underactuated
hand stops moving after contacting the object. After contact
with the brittle object, the hand does not move but continues
actuating to close. This causes an increase in the grasping
force, and it may lead to crushing or damaging the object. To
tackle this problem, whether excessive force is being applied
is detected by observing the movement of the hand during
actuation. For detection of the hand’s movement, the centroid
of each finger is used. The centroid is calculated for each
region of the finger from Fig. 3. In Fig. 5, the centroid of
each finger is indicated by a blue dot. Here, (ul, vl) and
(ur, vr) are expressed as the position of the centroids of the
left and right fingers, respectively, on the image coordinate
system. lshift and rshift are introduced as the displacement
of each finger and calculated using the following equations.

lshift = (ul(t− 1)− ul(t))
2 + (vl(t− 1)− vl(t))

2 (1)
rshift = (ur(t− 1)− ur(t))

2 + (vr(t− 1)− vr(t))
2 (2)

where t and t− 1 represent the current and previous frames,
respectively.

Then the movement IfG1 of the hand is calculated as
follows.

IfG1 = lshift + rshift (3)

If IfG1 is smaller than a threshold during a certain time,
it indicates that the hand is not moving. In this case, it is
determined that the hand has grasped a brittle object. Then,
to avoid applying additional grasping force and damaging
the object, the actuator’s drive is stopped.

IfG2: object’s movement along the v axis on an image
coordinate system When grasping an object, such as a
small object, the hand comes to a halt after contact, but soon
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Fig. 5. IfG1: the centroid of
each finger.

Fig. 6. IfG2: lifting in the v direction.
　

the object moves vertically. Because of the movement of
the object, IfG1 exceeds the threshold. Therefore, whether
excessive grasping force was applied to the object cannot be
detected. To deal with such a case, another perspective is
needed.

Because an underactuated hand is used, its passive joint,
which is indicated by the blue arrow in Fig. 6(b), rotates
after contact. This causes vertical movement of the fingers.
Additionally, if excessive grasping force is applied to the
object, the object moves vertically. Therefore, by detecting
the vertical movement of the object, it is possible to grasp
the object without applying excessive force.

The object’s centroid, represented as red circle in Fig. 5,
is used to detect its movement. The centroid is calculated
from the object region extracted as shown in Fig. 3. Defining
the object’s movement as the displacement of it, IfG2 is
calculated by the following equation.

IfG2 = v(t− 1)− v(t) (4)

Here, v represents the value of the centroid along the v
axis on the image coordinate system. t and t − 1 represent
the current and previous frames, respectively. After this
detection, the actuator is controlled to stop driving so as not
to crush the object.

IfG3: object deformation Grasping a soft object with
excessive force may cause large deformation of the object,
resulting in damage to it. To prevent applying excessive force
to the soft object, the deformation of the object is detected
from an image.

The deformation is detected by calculating the movement
of all points on the object’s contour in each frame. By
assuming that the force to crush the object is applied in the
horizontal direction, only the movement of the points along
the u axis in the image coordinates is used. In Fig. 5, the
u axis is indicated in the upper left corner of the figure. To
calculate the movement of points, the Lukas–Kanade optical
flow [22] technique is used. The result of applying the optical
flow method to the object contour is indicated by the red
points in Fig. 5. Fig. 7 shows the calculation procedure. In
the frame t − 1 before deformation, the position along the
u axis of each point on the object’s contour is denoted by
ui(t−1). Grasping forces, indicated by the green arrows, are
applied horizontally to the object. Then a point at ui(t−1) is
assumed to move along the magenta arrow shown in the right
image. The new position of the point at ui(t − 1) after the

Fig. 7. IfG3: deformation of the object.

movement is defined as ui(t). The deformation of the object
at the currently observed point is defined by the difference
between ui(t − 1) and ui(t). Considering all N points on
the contour, the overall deformation IfG3 of the object is
calculated by the following equation.

IfG3 =
1

N

N∑
i=1

|ui(t)− ui(t− 1)| (5)

In (5), for normalization, the sum of the displacement
along the u axis is divided by the number N of points
on the contour. This normalization enables detection of the
deformations of objects of different sizes.

IfG4: occlusion rate of the robotic hand Fig. 8(a)
shows an example of grasping a soft object. In this case, it
may not appear that the object is deforming in the image.
However, in reality, deformation occurs in areas that are not
visible in the image. Therefore, IfG3 is not sufficient to detect
the deformation of the soft object; it may lead to damage to
the object because of excessive force. On the other hand, in
Fig. 8(b), the object appears undeformed, but occlusion is
occurring where the hand is hidden by the object. Based on
this fact, in our method, the degree of occlusion of the hand is
observed to detect the deformation of the object. Therefore,
it is possible to grasp a soft object without excessive grasping
force.

To detect occlusion of the hand, the dimensions of both
the hand and the object are used. The total dimensions
of the hand before grasping detection are introduced as
H(0). The total dimensions of the hand and the object in
grasping detection in frame t are denoted as H(t) and O(t),
respectively. These dimensions of both the hand and the
object can be obtained from Fig. 3. Using these dimensions,
the occlusion rate IfG4 of the hand is calculated by the
following equation.

IfG4 =
H(0)−H(t)

O(t)
(6)

In (6), IfG4 is defined not only as the difference between
H(0) and H(t), i.e., the dimensions of the occluded region,
but also as the difference divided by O(t). The reason is
explained as follows. The dimension of the occluded region
varies according to the grasping force. The grasping force
required so as not to drop the object depends on the mass
of the object. Meanwhile, even with the same hardness,
the mass of the object changes with its size. Therefore,
considering not only the hardness but also the size of the
object is important to grasp it with the appropriate force. In
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(a) Grasping a soft object. (b) An enlarged view of the contact area.

Fig. 8. Occlusion of the robotic hand.

Fig. 9. IfG4: relation between
object size and occluded dimension.

Fig. 10. Slip and rotation detection.
　

Fig. 9, objects 1 and 2 are assumed to have the same hardness
but to be different in size and mass. The occluded regions
when sufficient grasping forces are applied to objects 1 and
2 are shown in red and green, respectively. H(0) indicates
the dimension enclosed by the blue boundary in the lower
left of Fig. 9. Similarly, in frame t, H(t) is calculated for
the same region as H(0), where not occluded by the object,
by measuring its dimension. Furthermore, O1(t) and O2(t)
in Fig. 9 correspond to O(t) in (6). Due to the difference in
size, the dimensions of the occluded region H(0) − H1(t)
for Object 1 are smaller than those for Object 2, denoted as
H(0)−H2(t). Therefore, normalizing changes H(0)−H(t)
in the robotic hand’s dimension by dividing it by the object’s
dimension O(t) allows the grasping force to be adjusted
appropriately for objects of different sizes.

E. Grasp detection during arm control

In the pick-and-place task using a robotic arm, it is crucial
to maintain the quality of food by preventing the object from
dropping. Moreover, moving the robotic arm in an unstable
state, when the object is prone to rotation or slippage, may
lead to dropping of the object. Therefore, using the images
to detect slipping and rotating of the object makes it possible
to grasp the object without dropping it.

Slip detection When an object slips, the relative position
between the hand and the object changes. Therefore, using
the centroid of the hand and the object enables the detection
of situations where the object held by the hand is slipping. In
Fig. 10, the centroids of the hand and object are represented
by the green and red dots, respectively. Here, the centroid
of the hand is defined as the average point of each finger
centroid. The line connecting the green and red dots is shown
in black. The length of the black line can be represented as
l(t). Especially before moving the robotic arm, the length is

Fig. 11. Experimental condition.

denoted as l(0). When the object is slipping, the centroid of
the object moves in the positive direction along the v axis in
the image coordinate system. That is, l(t) becomes greater
than l(0). Thus, the difference in the length of the black line,
denoted as ldiff , is calculated as follows.

ldiff = l(t)− l(0) (7)

When ldiff exceeds the threshold value, the object is
detected to be slipping. After the detection, the robotic
hand is closed to increase the gripping force, preventing the
object from further slipping and dropping. Additionally, by
substituting the current value of l(t) with l(0) after increasing
the gripping force, slip detection is continuously performed
during the arm movement.

Rotation detection It is also necessary to detect the
rotation that causes the object to slip or drop. To detect
rotation, a bounding box enclosing the contour of the object
is used. In Fig. 10, the bounding box is indicated by the
orange rectangle. By calculating the changes in height of
the rectangle, the rotation of the object is detected.

The difference in height hdiff between the initial height
h(0) before moving the arm and the height h(t) during arm
movement is obtained using the following equation.

hdiff = |h(t)− h(0)| (8)

When hdiff exceeds the threshold value, the object is
detected to be rotating. After this detection, the robotic hand
is closed as in slip detection, and the value of h(t) will be
updated as the same procedure in slip detection.

IV. EXPERIMENTS

A. Experimental setup

To verify the effectiveness of the proposed method, we
conducted grasping experiments. The experimental environ-
ment is shown in Fig. 11. In this experiment, we used the
Yale OpenHand Project’s Model T-42 [8] for the under-
actuated hand, the MG400 robotic arm from DOBOT, the
acA1300-200uc camera from Basler, and the 4 mm fixed-
focus lens from Edmund Optics’ UC series. As objects to
be grasped, food items were selected as shown in Fig. 12.
To test the same foods in different sizes, some items were
reproduced by changing the orientation of the objects, such
as Pose A or Pose B. After grasp detection, the robotic arm
was moved along the path defined in Fig. 13. For each object,
we performed ten trials.
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Fig. 12. Tested objects of real food items.

Fig. 13. Trajectory of the robotic arm.

B. Experimental results

Evaluation of the experimental results was conducted
based on the grasping success rate (esuccess), and the number
of observed damages was confirmed visually (edamage).
esuccess is calculated as the success rate of grasping without
dropping the object until the end of the trajectory. The results
are presented in Table 1. Except for (k) Lunch cup, a success
rate of over 90% was achieved. This could be attributed to
closing the hand during object slippage or rotation to prevent
droppage. Additionally, except for (e) Oden radish A and (f)
Oden radish B, the objects were grasped without causing
any damage. This was because of the detection of object
movement and deformation, which enabled the avoidance of
excessive grasping force.

C. Discussion

In the case of (k) Lunch cup, although grasp detection
was successful, there were frequent failures in lifting the
object from position P0 to position P1, as shown in Fig.
13. (k) Lunch cup exhibited varying degrees of deformation,
depending on the grasp location. In the experiments, we
selected less deformable parts as the grasp position. However,
due to the low friction coefficients of the hand and the small
contact areas, the necessary friction force to support the
weight of the lunch cup was not generated. Therefore, the
object slipped off. To tackle this problem, we are considering
increasing the number of fingers on the hand and enlarging
the contact area to achieve a secure grip without slippage.

The state after grasp detection for (e) Oden radish A is
shown in Fig. 14(a). At that time, IfG3 was detected appro-
priately, but the object was grasped only by the fingertips of

TABLE I. Experimental results

Object Pose Evaluation value
esuccess edamage

(a) Boiled egg A 100 0
(b) Boiled egg B 100 0
(c) Spring roll A 100 0
(d) Spring roll B 100 0
(e) Oden radish A 100 1
(f) Oden radish B 100 1
(g) Raw egg A 90 0
(h) Raw egg B 100 0
(i) Tofu A 100 0
(j) Tofu B 100 0
(k) Lunch cup 10 0
(l) Potato chips 100 0

(a) Small contact region. (b) Damage.

Fig. 14. Damage on Oden radish A.

the hand. In addition, during the arm movements, there were
false detections of the object dropping, leading to increased
grasping force. Because of these two indexes, locally large
forces were applied, which caused damage, as shown in
Fig. 14(b). To prevent localized grasping forces, we aim to
calculate the grasp position that increases the contact area.

(g) Raw egg A dropped because the surface of the object
was hard and slippery. The object slipped in the depth
direction of the image due to disturbances caused by the
arm movements, leading the object to drop. To tackle this
problem, we are considering calculating the grasp position
to make it possible to geometrically constrain the object.

V. CONCLUSION

In this paper, we proposed a visual feedback control
method with an underactuated hand for object grasping using
a monocular camera. Without using any internal sensors
or markers, grasping of brittle and soft food items was
performed. First, contact between the hand and the object
was detected using the overlap between the two contours.
Then, to avoid damaging the food, we used the centroid of
the hand and the object, the deformation of the object, and
the occlusion rate of the hand. Moreover, the slippage and
rotation of objects were detected during the movement of the
robotic arm. In the experiments, the grasping success rate
was above 90% for all cases except (k) Lunch cup. Further,
all the food items were successfully grasped without causing
any damage except in the cases of (e) Oden radish A and (f)
Oden radish B.

In the future, we aim to calculate the grasp position where
the hand can adapt to object shapes.
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