
Real-time 3D Map Update at Point-level
for LiDAR-based Localization in Changing Environments

Yuhei Oshikubo1, Sarthak Pathak2, Yonghoon Ji3, and Kazunori Umeda2

Abstract— In this paper, a novel framework for real-time lo-
calization through pre-built map update by 3D LiDAR mounted
on a robot is proposed. Autonomous mobile robots usually
use high-precision 3D maps (i.e., HD maps) built in advance.
However, as time passes, the environmental map changes
from the actual environment, adversely affecting autonomous
navigation. In addition, it is costly to recreate an HD map every
time the environment changes. Therefore, it is necessary to
update environmental maps simply and frequently. We propose
a method for real-time map updating in the form of point
clouds and validate the results of integrating map update with
localization.

I. INTRODUCTION

3D point cloud maps are essential for the localization
of autonomous mobile robots. Point cloud localization is
typically performed by scan matching of a point cloud
acquired by a sensor (e.g., LiDAR, RGB-D camera) with
a pre-built point cloud map. Conventional localization as-
sumes that there are no significant differences between the
respective point clouds. Since changes in the environment
are unavoidable during long-term operations, a difference
between the environmental map and the actual environment
may be judged unstable due to low matching even though
the pose estimation is accurate as shown in Fig. 1. Therefore,
pre-built point cloud maps need to be updated regularly.
However, the cost of manually building environmental maps
every time a change occurs is large. There have been many
studies on updating environmental maps in both 2D and
3D to solve this problem. The main methods for updating
the point cloud map are pose graphs [1], [2], geometric
methods [3], occupancy grids [4], [5], and a combination
of them [6], [7]. Update based on pose graphs or geometric
methods may result in fault in measurements that include
occlusions. In other words, most of these methods assume
that it is possible to obtain data for a large area of the
map to be managed every time. On the other hand, it is
necessary to consider a framework to update the map during
the daily operation of the robot to reduce the cost of map
updating. Therefore, we consider the occupancy probability
of the point cloud map and the light path from the LiDAR
to ensure robustness in measurements with occlusion. The

1Precision Engineering Course, Graduate School of Science and En-
gineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
oshikubo@sensor.mech.chuo-u.ac.jp

2Department of Precision Mechanics, Faculty of Science and Engi-
neering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
{pathak, umeda}@mech.chuo-u.ac.jp

3Graduate School for Advanced Science and Technology, Japan Ad-
vanced Institute of Science and Technology, 1-1 Asahidai, Nomi-shi,
Ishikawa, Japan. ji-y@jaist.ac.jp

idea is similar to OctoMap [8], a type of occupancy grid.
We extend the method to the point level to maintain the
point cloud format. Updating the map at the point level
not only improves the accuracy of localization, but also can
be expected to be used for a variety of purposes such as
measurement and construction management.

The contributions of this study are as follows:
• We propose a new framework to update 3D point clouds

easily and in real time and use them for localization. By
considering the confidence score known as occupancy
probability at the point level, it is robust to occlusion
and dynamic environments and can be updated in detail.
In addition, we achieved real-time updating of point
cloud maps.

• We achieve robust localization in changing environ-
ments by the proposed method.

Fig. 1. Degradation of a pre-built point cloud map. The green points are
pre-built point cloud map and the white points are from LiDAR mounted
on a robot. Some objects were moved, deleted, or added compared to when
the map was built in advance.

II. MAP UPDATE AND LOCALIZATION
A. Overview

Fig. 2 shows an overview of the proposed framework
in a single session. Our framework can be classified into
two sections: localization and point cloud map update. This
study focuses on map update and assumes that localization
is performed correctly and that the initial pose is known.

Point cloud map update has three phases: initialization,
front-end processing and back-end processing. Initialization
gives a confidence score to the point cloud with only ge-
ometric information. The front-end process detects changes
and updates the confidence score of each point as shown
in the Fig. 3. In the back-end processing, the updated point
cloud map is passed to the localization side. Localization
is performed using the updated point cloud map. The last
updated point cloud for a given session is used as the pre-
built point cloud map for the next session.

2025 IEEE/SICE International Symposium on System Integration (SII)
January 21-24, 2025, Munich, Germany

979-8-3315-3161-4/25/$31.00 ©2025 IEEE 1400

Fig. 2. Overview of localization and point cloud map update in a single session

Fig. 3. Sequential processing of input

B. Initialization of point cloud map

If the number of points in the point cloud map M is N
and the point with confidence score ci is m i, the map can
be expressed as follows:

M = {m i | m i = (xi, yi, zi, ci) ∈ R3, i = 1, 2, . . . , N}
(1)

Here, 0 ≤ ci ≤ 1, cinit is the initial value, and cth is the
threshold value that determines the update. Note that cth ≤
cinit. This assumption prevents unwanted erasure of point
clouds in occlusion areas. In this study, cth and cinit are set
as 0.5.

C. Dynamic object removal in LiDAR point clouds

In this subsection, we describe the process of removing
dynamic points from a LiDAR point cloud. When a robot
performs its daily activities, it may be surrounded by dy-
namic objects such as humans. Generally, dynamic objects
are not suitable for localization; thus, it is necessary to
remove them from the point cloud map. In this study, we use
a differencing method to detect dynamic points. However,
difference detection is difficult because the number of point
clouds in a frame obtained from a LiDAR is sparse, and the
changes between consecutive frames are small. Therefore,
as shown in Fig. 4(a), the point cloud from the previous
frame α to the current frame t are stored, and the green point

(a) Buffers of sensor point cloud

(b) Visualization results for buffers of LiDAR point clouds

Fig. 4. Differential detection of LiDAR point clouds

cloud accumulated for β + 1 frames based on the previous
frame α are used for difference detection from the point
cloud in the current frame shown in white. The blue points
are the points from one frame prior to the current frame and
have changed little compared to the white points. Fig. 4(b)
shows the result of visualizing each point cloud. We used
the Octree [9] structure of the Point Cloud Library (PCL)
[10] for difference detection. Here, the LiDAR point clouds
with no overlap are removed as dynamic points. The LiDAR
point cloud in the overlapped area is treated as a candidate
to be added to the point cloud map explained in the next
subsection.

D. Addition of new points to the point cloud map

This subsection describes the process of adding a new
point cloud to the point cloud map. In the candidate sensor
point cloud to be added to the map point cloud obtained in
the previous subsection, points that already exist in the point
cloud map do not need to be added. If the pose estimation
results are approximately correct, it can be determined by
comparing the point cloud map and the sensor point cloud.
Specifically, when there is no overlap in both point clouds,
it is considered as a new emergent point. We use Octree
to compare the point cloud map converted to the sensor

1401

coordinate system and the sensor point cloud with dynamic
points eliminated. Furthermore, the overlapping points are
used for the next process explained in the next subsection.

E. Calculation of the confidence score of each point in the
point cloud map

When updating the map point cloud, points that have not
changed should remain unchanged. First, we discuss how to
find points that increase the confidence score in the map point
cloud. As mentioned above, if the pose estimation results are
almost correct, the same area can be identified as unchanged
by measuring it in both the map and sensor point clouds.
Using this phenomenon, we increase the confidence score of
each overlapping point cloud map based on the binary Bayes
filter [11].

Next, we describe a method for finding missing points. It
is important to consider occlusion when determining the lost
points. In general, it is possible to use volumetric voxel grids
to construct maps that are robust to occlusion; however, the
processing is known to be heavy [12]. Hence, we consider the
path of the rays from the LiDAR without volumetric voxel
grids. In an ideal environment, if LiDAR points are exsisted
beyond the point cloud map in the region along the ray cast
from the LiDAR, it indicates a loss of the point cloud map.
Using this phenomenon, the points of the point cloud map are
determined to be unoccupied by comparing the centroid of
each point cloud at arbitrary angles in a spherical coordinate
system. This allows for fast update without changing the
format of the point cloud map. Fig. 5 is a schematic of
the comparison made in the sensor coordinate system to
determine the point cloud map of disappearance. The method
consists of the following steps:

1) Each point cloud (i.e., the point cloud map converted
to the sensor coordinate system and the sensor point
cloud with dynamic points eliminated) is trimmed.

2) Each point cloud is stored for each arbitrary angle θ,
ϕ.

3) The centers of gravity of the point cloud of the map
and the sensor point cloud for each arbitrary angle are
calculated.

4) The distances rmap and rsensor from the sensor to each
center of gravity are obtained.

5) When rsensor−rmap is higher than rth, the point cloud
of map is considered to have disappeared.

The formula to update the confidence score cti that the i-th
point in frame t is as follows:

cti = p(m i | oti) = 1−
(

1

1 + exp(lti)

)
(2)

lti = lt−1
i + ln

(
p(m i|oi,t)

1− p(m i|oi,t)

)
(3)

where oti indicates whether the i-th point exists up to frame
t, oi,t indicates whether the i-th point in frame t exists or
not and lti is log odds of the probability that the i-th point
exists in frame t.

Fig. 5. Comparison of map point clouds and sensor point clouds at arbitrary
angles in a spherical coordinate system

F. Output of the updated point cloud

The point cloud map is published for the localization side
by considering the confidence score c of each point. Namely,
points that are higher than the cth threshold are kept, and
points that are lower than the cth threshold are removed.
As described in subsection II-B, by setting cth to a value
less than or equal to cinit, the original point cloud map
information can be retained for areas where no measurements
were taken. The timing of updating the point cloud map
can be changed as necessary. In this study, the map point
cloud used for pose estimation is updated every 10 times the
confidence score is calculated.

G. Localization

In this study, the point cloud map is regularly updated by
customizing a package [13] in which normal distributions
transform(NDT) scan matching [14] is implemented for
localization.

III. EXPERIMENTS

A. Experimental Setup

To verify the effectiveness of the proposed method, the
point cloud map was updated by running the robot at
locations where changes have occurred since the pre-built
point cloud map was created, as shown in Fig. 6. The pre-
built point cloud map was created by FARO Focus M70.
In experiments, we evaluated whether the point cloud map
was updated properly by the proposed method, its real-
time performance and effects on localization under the two
conditions listed in the Tbl. I. The updated point cloud
map was evaluated qualitatively. The effects of real-time
update on localization was evaluated quantitatively using the
absolute pose error(APE) by evo [15] and transformation
probability(TP) calculated by NDT scan matching. APE eval-
uates the accuracy of localization by comparing the estimated
position to the ground truth. TP measure the likelihood
whether the computed transformation between two point
clouds or scans is accurate. A higher TP indicates a higher
confidence in the estimated transformation, suggesting that
the two scans have been matched well. This indicator is used
to verify whether accurate localization is being achieved, and
if this value is not sufficiently high, the robot may stop for
operational safety even if the pose is correct. Note that high
value does not guarantee that correct pose estimation is being
peformed. As shown in Fig. 7, a robot equipped LiDAR was

1402

used in the experiment. A Megarover Ver. 3.0 from Vstone
and a Livox mid-360 were used for the robot and LiDAR.
This was controlled using a laptop computer mounted on the
robot. The motion capture system was used to obtain ground
truth pose. The motion capture camera was an OptiTrack
V120 Trio and the acquired pose were communicated with
the laptop using the ROS driver for the NatNet protocol [16].

Fig. 6. Two snapshots of the changing environments. Red circles indicate
where changes occurred. For example, changes include opening a curtain,
repositioning a desk, removing a ladder, and adding a vertical panel.

Fig. 7. Experimental devices

B. Results

Fig. 8 is the result of updating the 3D point cloud. The
map in the figure was downsampled using a 0.05 m voxel
grid. The results show that the point cloud can be added
and removed approximately. Fig. 9 shows the transform
probability in the proposed method and the conventional
method (without map update) while the robot is navigating
with different parameters. It indicates that the transform
probability of the proposed method increases a few seconds
after the robot starts running. Therefore, it can be seen
that real-time updating of the point cloud map improves
the robustness of the estimation. Fig. 10 shows the APE
for each method. This indicates that the proposed method
performed slightly better overall. Due to the fact that there
were no significant changes in this experiment. In other

words, in an environment with a sufficient amount of static
geometric features, updates some of the changes contribute
little to the accuracy of localization, but lead to robustness.
Furthermore, the average computation times per cycle for
map updates using the Intel Core i7-12700H CPU were as
follows: Condition 1, 151.25 ms; Condition 2, 115.49 ms.
This indicates that real-time performance was achieved.

Fig. 8. Results of point cloud map update. The color of the points represents
the confidence score.The red points indicate that LiDAR measurements were
taken in this experiment and that the confidence score is high. Points with
confidence score c lower than cth were removed. The light blue trajectory
is the estimated path of the robot.

(a) Condition 1

(b) Condition 2

Fig. 9. Transform probability. Each condition is described in Tbl. I

1403

Condition Voxel Size for Downsampling (Map) ND Voxel Size (NDT Scan Matching) Downsampling for LiDAR cloud
1 0.05 m 0.2 m None
2 0.1 m 0.5 m None

TABLE I Parameters for each of the conditions

(a) Condition 1

(b) Condition 2

Fig. 10. The evaluation of absolute pose error (APE) using evo [15]. Each
condition is described in Tbl. I

IV. CONCLUSIONS

In this paper, we proposed a framework for updating 3D
point cloud maps in real-time using 3D LiDAR mounted on
a robot and verified by experiments. Specifically, we made
it possible to update the point cloud map by considering
the occupancy probability of each point in the map point
cloud. Our results show that the proposed method correctly
updates the map in real time and contributes to improving
the reliability of localization. In the future, we will consider
making the system work in environments where there are
larger changes.

REFERENCES

[1] Min Zhao, Xin Guo, Le Song, Baoxing Qin, Xuesong Shi, Gim Hee
Lee, and Guanghui Sun, “A General Framework for Lifelong Localiza-
tion and Mapping in Changing Environment”, Proc. of International
Conference on Intelligent Robots and Systems, pp. 3305-3312, 2021.

[2] Bin Peng, Hongle Xie, and Weidong Chen, “ROLL: Long-Term Ro-
bust LiDAR-based Localization With Temporary Mapping in Chang-
ing Environments”, Proc. of International Conference on Intelligent
Robots and Systems, pp. 2841-2847, 2022.

[3] Kun Liu, Jan Boehm, and Christian Alis, “Change Detection of Mobile
LiDAR Data Using Cloud Computing”, The International Archives
of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. LI-B3, pp. 309-313, 2016.

[4] Georgios Tsamis, Ioannis Kostavelis, Dimitrios Giakoumis, and Dim-
itrios Tzovaras, “Towards Life-long Mapping of Dynamic Environ-
ments Using Temporal Persistence Modeling”, Proc. of International
Conference on Pattern Recognition, pp. 10480-10485, 2020.

[5] Liudi Yang, Sai Manoj Prakhya, Senhua Zhu, and Ziyuan Liu,
“Lifelong 3D Mapping Framework for Hand-held & Robot-mounted
LiDAR Mapping Systems”, in Robotics and Automation Letters, 2024.

[6] Erik Einhorn and Horst-Michael Gross, “Generic 2D/3D SLAM with
NDT Maps for Lifelong Application”, Proc. of European Conference
on Mobile Robots, pp. 240-247, 2013.

[7] Giseop Kim and Ayoung Kim, “LT-mapper: A Modular Framework for
LiDAR-based Lifelong Mapping”, Proc. of International Conference
on Robotics and Automation, pp. 7995-8002, 2022.

[8] Armin Hornung, Kai M. Wurm, Maren Bennewitz, Cyrill Stachniss,
and Wolfram Burgard, “OctoMap: An Efficient Probabilistic 3D Map-
ping Framework Based on Octrees”, Autonomous Robots, vol. 34, no.
3, pp. 189-206, 2013.

[9] Donald Meagher, “Geometric Modeling Using Octree Encoding”,
Computer Graphics and Image Processing, vol. 19, no. 2, pp. 129-147,
1982.

[10] Radu Bogdan Rusu and Steve Cousins, “3D is here: Point Cloud
Library (PCL)”, Proc. of International Conference on Robotics and
Automation, pp. 1-4, 2011.

[11] John Mullane, Martin D. Adams and Wijerupage Sardha Wijesoma,
“Robotic Mapping Using Measurement Likelihood Filtering”, Inter-
national Journal of Robotics Research, vol. 28, no.2, 2009.

[12] Heajung Min, Kyung Min Han, and Young J. Kim, “OctoMap-RT:
Fast Probabilistic Volumetric Mapping Using Ray-Tracing GPUs”,
Robotics and Automation Letters, vol. 8, no. 9, pp. 5696-5703, 2023.

[13] AbangLZU, “A simple, clean NDT licalization ROS package”,
https://github.com/AbangLZU/ndt_localizer

[14] Peter Biber and Wolfgang Strasser, “The Normal Distributions Trans-
form: A New Approach to Laser Scan Matching”, Proc. of Interna-
tional Conference on Intelligent Robots and System, vol.3, pp. 2743-
2748, 2003.

[15] Michael Grupp, “evo: Python package for the evaluation of odome-
try and SLAM”, https://github.com/MichaelGrupp/evo,
2017.

[16] Aarsh Thakker, “Seamless Integration of Optitrack Motion Capture
with ROS” , Conférence annuelle des développeurs et utilisateurs ROS,
https://github.com/L2S-lab/natnet_ros_cpp, 2022.

1404

