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Abstract 

In recent years, the number of pipes that have exceeded their service life has increased. For this reason, earthworm-
type robots equipped with cameras have been developed to perform regularly inspections of sewer pipes. However, 
inspection methods have not yet been established. This paper proposes a method for anomaly detection from 
images in pipes using Generative Adversarial Network (GAN). A model that combines f-AnoGAN and Lightweight 
GAN is used to detect anomalies by taking the difference between input images and generated images. Since the 
GANs are only trained with non-defective images, they are able to convert an image containing defects into one 
without them. Subtraction images is used to estimate the location of anomalies. Experiments were conducted using 
actual images of cast iron pipes to confirm the effectiveness of the proposed method. It was also validated using 
sewer-ml, a public dataset.

Keywords  Infrastructure inspection, Sewer pipe, Deep learning, GAN, Anomaly detection

Introduction
Sewerage systems are important infrastructure facilities 
for improving public health and maintaining water qual-
ity. However, in Japan, the number of sewer pipes that 
have reached the end of their useful life of 50 years has 
reached approximately 22,000  km, and the number is 
increasing every year [1]. However, the number of sewer 
pipes in Japan that have reached the end of their useful 
life of 50  years has reached approximately 22,000  km, 
and the number is increasing every year. In 2019, 
approximately 2900 road subsidence incidents have been 
reported in Japan [1]. In order to prevent such collapses, 
the inside of the pipe should be inspected. For this rea-
son, the development of worm-shaped robots for piping 
inspection, as shown in Fig.  1, and inspection methods 
are being studied [2].

In this research, we focus on pressure pipes, which 
account for 5 to 10% of all sewer pipes inspected in Japan. 
Compared to conventional sewer pipes, pressure pipes 
are less restricted by topography and can be laid out rela-
tively freely [3]. Therefore, inspection methods have not 
been established. The defects that occur in pressure-feed-
ing pipes differ depending on the material. Vinyl chloride 
pipes are deformed by soil pressure and cast iron pipes 
have rust on the inner surface of the pipe. These defects 
must be detected and located from the images.

In recent years, with the development of deep learn-
ing, research in the field of anomaly detection, such as 
defect inspection of industrial products, has been active 
[4]. In general, anomaly detection is difficult to perform 
supervised learning because there is very little anomaly 
data compared to normal data. For this reason, unsuper-
vised learning using non-defect data is often used, with 
deviations from the normal distribution being considered 
abnormal. It is considered effective to solve this problem 
as an abnormality detection problem in the inspection. 
Oyama et al. [5] proposed a method for detecting abnor-
malities in piping using Variational AutoEncoder (VAE) 
[6] and Residual Network (ResNet) [7]. Specifically, the 

*Correspondence:
Shigeki Yumoto
yumoto@sensor.mech.chuo-u.ac.jp
Graduate School of Science and Engineering, Chuo University, 1‑13‑27 
Kasuga, Bunkyo‑Ku, Tokyo 112‑8551, Japan

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40648-023-00246-y&domain=pdf


Page 2 of 12Yumoto et al. ROBOMECH Journal            (2023) 10:9 

VAE learns only non-defect images and calculates the 
degree of abnormality by taking the difference between 
the input image and the generated image to detect abnor-
malities. The method also estimated the anomaly loca-
tion by inputting the input image and the generated 
image to ResNet and extracting the middle layer of the 
input image and the generated image. However, VAE has 
the disadvantage of blurring the generated image. There-
fore, they have not been able to estimate the location of 
anomalies, In addition, the experiment was conducted on 
a self-made data set that imitated rust, and no verifica-
tion was conducted using actual cast-iron pipe images.

The objective of this paper is to detect abnormal rust 
in cast iron pipes and to estimate the location of abnor-
malities. Specifically, we use a generative model of deep 
learning, the Generative Adversarial Network (GAN) 
[8]. Anomaly detection and anomaly location estimation 
are performed by combining f-AnoGAN [9], one of the 
GAN anomaly detection methods, and Lightweight GAN 
[10], a model for image generation. Validity is confirmed 
by verification using cast iron pipe images using actual 
cast iron pipe images captured by a camera mounted on 
an earthworm robot. Validation is also performed using 
Sewer-ML [11], a public dataset.

Proposed method
Outline of proposed methodology
Figure 2 shows the flow of the proposed method in this 
paper. GAN learns non-defect images among the images 
taken by the worm-shaped robot. Next, fix the GAN 
parameters and have Encoder learn only non-defect 
images. The learned model is used to generate an image, 
and the difference from the input image is taken. If the 
difference is small, it is judged as normal, and if the dif-
ference is large, it is judged as abnormal. If an abnormal-
ity is detected, estimate the location of the abnormality 
from the subtraction image. In this research, we are faced 

with the problem of only having a small amount of train-
ing data, since it is still difficult to conduct experiments 
using actual robots.

Generative adversarial networks
GAN consists of two neural networks, Generator and 
Discriminator, which learn to deceive each other. The 
generator takes noise as input and generates images that 
resemble the training data. The discriminator takes the 
images generated by the generator or the training data 
as input and identifies whether they are real or fake. 
The generator is intended to be misrecognized by the 
discriminator. Adversarial learning between the genera-
tor and discriminator allows the generator to generate 
images that resemble the training data.

Lightweight GAN
Lightweight GAN [10] is a model that can generate high-
resolution images with a small amount of training data 
in a short training time. Generally, it is necessary to train 
tens to hundreds of thousands of images to generate 
high-resolution images with a GAN. Lightweight GAN 
uses a Skip-layer channel-wise Excitation (SLE) module 
and a self supervised discriminator in the Generator to 
generate high resolution images with a small amount of 
data and short training time.

The structure of Generator is shown in Fig. 3. The blue 
arrows indicate upsampling and convolution. The red 
arrows indicate the inputs and outputs of the SLE mod-
ule, which takes a small feature map and a large feature 
map as inputs and fuses them together. This allows gradi-
ent propagation at low computational cost.

The structure of the Discriminator is shown in Fig.  4. 
It performs self-supervised learning. The blue arrows 

Fig. 1  Earthworm robot [2]

Fig. 2  Outline of proposed method
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indicate down-sampling and 5 × 5 resizing. The difference 
between the resized training data and the data generated by 
the Generator is the loss.

Also, an 8 × 8 part is randomly cut out from the 16 × 16 
feature map and input it to Simple Decoder. The output 
is I ′part . 8 × 8 feature map is input to Simple Decoder and 
its output is I ′ . The same process is applied to the training 
data and denote I and Ipart respectively.

The difference between I’ and I, I ′part and I ′part is used as 
the reconstruction error. This is expected to capture the 
whole image and local features.

The loss function is an Adversarial loss of Hinge type, 
and the reconstruction error Lrecon is added when the train-
ing data is input to the Discriminator. The Discriminator 
loss LD and Generator loss LG are expressed by the follow-
ing equations.

D is the Discriminator, G is the Generator, x is a sample 
of the training data, z is the noise sampled from the latent 
space, and ∧x is the data generated by the Generator.

The reconstruction error Lrecons is

f is the Discriminator’s intermediate feature map, g 
is the Decoder’s processing for f, and T is the process-
ing for x. Learned Perceptual Image Patch Similarity 
(LPIPS) [12] is used for reconstruction error. LPIPS is a 
measure of the difference between two images.

(1)

LD =− E(x∼Ir eal)[min(0,−1+ D(x))]

− E
(
∧
x∼G(z))
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(

∧
x

))]
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(2)LG = −E(z∼N )[min(D(G(z)))]
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f
)

− T (x)
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Fig. 3  The structure of generator

Fig. 4  The structure of the discriminator



Page 4 of 12Yumoto et al. ROBOMECH Journal            (2023) 10:9 

In addition, the use of Differentiable Augmentation 
[13], a data augmentation method for GANs, enables 
learning with small amounts of data. Differentiable 
Augmentation is a method of applying data augmenta-
tion not only to the input image but also to the Genera-
tor’s generated image.

f‑AnoGAN
f-AnoGAN is one of the anomaly detection methods 
using GAN. Although GAN does not have a mechanism 
for reconstructing inputs, this model enables anomaly 
detection by introducing Encoder.

The flow of the method is described below. At train-
ing time, non-defect data are trained on the GAN. Next, 
the Encoder is trained using the trained GAN. Specifi-
cally, data x is input to Encoder and noise z is obtained. 
The noise z is input to the learned Generator to gener-
ate G(E(x)). Input data x and generated data G(E(x)) are 
trained to minimize the reconstruction error. During 
inference, test data are input to the learned The test data 
are input to the learned model and the reconstruction 
error between the input data x and the generated data (x) 
is taken as the anomaly.

Proposed model
In this paper, we use a model that combines f-AnoGAN 
and Lightweight GAN. The proposed model is shown in 
Fig. 5. WGAN [14] is used for f-AnoGAN, but it has the 
disadvantage of taking a long time to learn. Therefore, 
Lightweight GAN is used instead of WGAN. The use of 
a more specialized model for image generation would 
make it possible to estimate detailed anomaly location 
estimates from subtraction images. It is also expected to 
be stronger in learning with small amounts of data. As 
with f-AnoGAN, a 4-layer ResNet is used for the Encoder.

Loss function
The GAN loss function uses Eqs. 1 and 2.

Mean Squared Error is used for the loss function LE of 
the Encoder.

n is the total number of pixels, x is the input data, and 
G(E(x)) is the generated data.

Calculation of anomaly score
The calculation of anomaly is performed by calculating 
the difference between the input image and the generated 
image and summing the pixel values of all pixels in the 
subtraction image. A threshold value is set for the calcu-
lated anomaly to determine whether the image is normal 
or abnormal.

Estimation of abnormal locations
The subtraction image between the input image and the 
generated image is used to estimate the anomaly. The 
subtraction image is colored blue to indicate that the 
value is small, and red to indicate that the value is large. 
Therefore, red areas in the subtraction image are esti-
mated to be abnormal.

Experiment
Experimental condition 1
Experiments were conducted using the proposed method 
to detect anomalies and estimate the location of anoma-
lies in actual cast iron pipe images. The training data 
consisted of approximately 2200 normal images of actual 
cast iron pipes and approximately 2200 normal images 
of new cast iron pipes, for a total of approximately 4400 
images. Examples of training data are shown in Figs.  6 
and 7. The test data consisted of a total of 200 images: 50 

(4)LE(x) =
1

n
{x − G(E(x))}2

Fig. 5  Proposal method (image generation by lightweight GAN)
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normal images of actual cast iron pipe, 50 normal images 
of new cast iron pipe, and 100 abnormal images of actual 
cast iron pipe. Examples of abnormal images of the test 
data are shown in Fig. 8. The number of pixels in both the 
training and test data were resized to 256 × 256.

The evaluation method is based on the Area Under 
Receiver Operating Characteristic (AUROC), which is 
the size of the area under the ROC curve. The values 
range from 0 to 1, with a value closer to 1 indicating 
better model performance. No abnormality threshold is 
set for evaluation by AUROC.

Fig. 6  Example of normal cast iron pipe images

Fig. 7  Example of normal new cast iron pipe images

Fig. 8  Example of anomaly cast iron pipe images
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The number of iterations for GAN was set to 50000 
and batch size to 8. 500 epochs and batch size of 
Encoder were set to 16.

Experimental results 1
Figures 9, 11 and 13 show the GAN experimental results. 
Figures 10, 12 and 14 show the VAE experimental results. 
Figures 9, 10,11,12,13 and 14 show, from left to right, the 
input image, the generated image, and the subtraction 

image. The blue color in the subtraction image indicates 
a smaller difference value, while the red color indicates a 
larger difference value. Figure 9 and 10 shows a normal 
image of an actual cast iron pipe, Figs. 11 and 12 shows a 
normal image of a new cast iron pipe, and Figs. 13 and 14 
shows the results for an abnormal image of an actual cast 
iron pipe. The histogram of abnormality in Figs. 15 and 
16 shows that the blue distribution represents normal 
data and the orange distribution represents abnormal 

Fig. 9  Experimental results of normal cast iron pipe (GAN)

Fig. 10  Experimental results of normal cast iron pipe (VAE)

Fig. 11  Experimental results of normal new cast iron pipe (GAN)
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data; AUROC was 0. 986. On the other hand, the AUROC 
for VAE was 1. 0.

The high AUROC value of 0. 986 suggests that anomaly 
detection for the test data is feasible.

Looking at the generated images of normal cast iron 
pipes in Figs. 9 and 11, both generate images similar to 
the input image. From this fact, it is considered pos-
sible to determine whether the input normal image is 

normal or not, regardless of whether it is a new image 
or an actual image.

The Figs. 10 and 12 suggests that VAE is also correctly 
generated for both actual and new.

The generated image of the abnormal cast iron pipe 
in Fig. 13 shows that the image is generated as if there 
were no abnormal areas in the input image. The sub-
traction image shows that the white areas that are 

Fig. 12  Experimental results of normal new cast iron pipe (VAE)

Fig. 13  Experimental results of rust anormaly cast iron pipe (GAN)

Fig. 14  Experimental results of rust anormaly cast iron pipe (VAE)
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abnormal are reddish. This indicates that it is possible 
to estimate the location of the anomaly.

On the other hand, the subtraction image of VAE’s 
ResNet in Fig. 14 shows that the anomaly location cannot 
be estimated.

The histogram of abnormality in Fig. 15 shows that the 
distribution of normal and abnormal is divided to some 
extent. On the other hand, there are some areas where 
the distributions overlap. This is because some of the 
generated images could not be generated correctly. The 
reason may be that Encoder’s batch size was too small, 
resulting in poor feature extraction.

The histogram of VAE in Fig. 16 shows a complete sep-
aration of normal and abnormal distributions. This sug-
gests that VAE is able to correctly generate both normal 
and abnormal.

Experimental condition 2.
Experiments were conducted using the proposed 

method to detect anomalies and estimate the location 
of anomalies in sewer-ML, a public data set. Sewer-ML 
is a multi-label sewer defect classification dataset. The 
training data consisted of approximately 14000 normal 
images. Examples of training data are shown in Fig.  17. 
The test data consisted of a total of 2000 images: 1000 
normal images, and 1000 abnormal images. Examples of 
abnormal images of the test data are shown in Fig. 18.

The evaluation method is based on the Area Under 
Receiver Operating Characteristic (AUROC).

Experimental results 2
Figures 19 and 21 show the GAN experimental results. 
Figures 20 and 22 show the VAE experimental results. 
Figures  19, 20, 21 and 22 show, from left to right, the 
input image, the generated image, and the subtrac-
tion image. Figures  19 and 20 shows a normal image, 

Fig. 15  Histogram of anomaly score 1 (GAN)

Fig. 16  Histogram of anomaly score 1 (VAE)

Fig. 17  Example of normal pipe images
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and Figs. 21 and 22 shows the results for an abnormal 
image. The histogram of abnormality in Figs. 23 and 24 
shows that the blue distribution represents normal data 
and the orange distribution represents abnormal data; 

AUROC was 0. 634. On the other hand, the AUROC for 
VAE was 0. 649.

The AUROC of 0. 649 indicates that anomaly detection 
for sewer-ML is difficult, and the AUROC of 0. 634 for 
VAE indicates that it is similarly difficult.

Fig. 18  Example of anormaly pipe images

Fig. 19  Experimental results of normal pipe (GAN)

Fig. 20  Experimental results of normal pipe (VAE)
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The normal generated image in Fig.  20 shows that it 
is able to generate an image similar to the input image. 
Similarly, the VAE in Fig. 22 is able to generate an image 
similar to the input image.

The generated image of the anomaly in Fig. 21 shows 
that the image is generated as if there is no obstacle in 

the lower left corner, which is the anomaly location. 
The subtraction image shows that the anomaly is red. 
This suggests that it is possible to estimate the location 
of the anomaly. On the other hand, the generated image 
of the VAE anomaly in Fig. 22 shows that it has gener-
ated an anomalous location. Therefore, the subtraction 

Fig. 21  Experimental results of obstacle anormaly pipe (GAN)

Fig. 22  Experimental results of obstacle anormaly pipe (VAE)

Fig. 23  Histogram of anomaly score 2 (GAN)
Fig. 24  Histogram of anomaly score 2 (VAE)
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image of ResNet does not estimate the anomaly 
location.

The histograms of the anomaly levels in Figs.  23 and 
24 do not show much separation between normal and 
anomaly distributions in either case. This suggests that 
anomaly detection for sewer-ML is difficult. This is due 
to the large amount of variations in types of pipes. Divid-
ing the pipes based on type of material can lead to better 
results. Areas where the conduit divides, as shown in the 
Fig.  25, are visible differently in different places. There-
fore, there is little training data for such examples and it 
is difficult to generate accurate images. Straight conduits 
with more training data are considered suitable.

Conclusion
In this paper, we proposed a GAN-based anomaly 
detection method for detecting anomalies in piping. 
f-AnoGAN and Lightweight GAN models are combined 
to train non-defect images, and anomaly detection is 
performed by differencing input images and generated 
images to estimate anomalous locations from the sub-
traction images. Experiments were conducted on actual 
cast iron pipe images, and the AUROC was as high as 
0. 986, confirming the effectiveness of the proposed 
method. We also validated the data using sewer-ml, a 
public dataset. Comparison of the proposed method with 
conventional methods showed that the proposed method 
was superior in the estimation of anomalous locations. 
When considering practical applications, it is difficult 
to collect all data due to the wide variety of defect types. 
Therefore, compared to anomaly detection using object 
detection, the proposed method has the advantage that it 
does not require learning of defective images. Otherwise, 
pixelwise labelling of defective areas is required which is 
a very tedious task. The disadvantage is that if the defect 
area is small, the difference will be small and may not be 
determined as abnormal. Prospects are to improve the 

model so that it can generate more correct non-defect 
images.
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