人工物環境における直線情報を用いたカメラの外部パラメータ推定法

○池 勇勳(中央大学), 山下 淳(東京大学), 梅田 和昇(中央大学), 淺間 一(東京大学)

External Parameter Estimation of Camera Using Line Information in Man-made Environment

○ Yonghoon JI (Chuo University), Atsushi YAMASHITA (The University of Tokyo), Kazunori UMEDA (Chuo University), and Hajime ASAMA (The University of Tokyo)

Abstract: In this paper, we propose a novel approach that performs external parameter estimation of a camera installed in a man-made environment using a single image and a 3D environment model. A novel image descriptor defined in quantized Hough space is designed in order to perform 3D-2D matching process between line features from the 3D line model and 2D single image.

1. 序論

近年、人間を取り巻く環境内にカメラネットワーク など,分散センサインフラを構築する環境知能化技術 に注目が集まっている[1,2]. 知能化空間(intelligent space) 内に設置されているカメラネットワークから信頼性の ある情報を収集するためには、各カメラに対する精密 なキャリブレーション作業が不可欠である.ここで, キャリブレーションの対象となるカメラパラメータは, 焦点距離や歪み係数などの内部パラメータとカメラの 6 自由度の位置・姿勢情報(x, y, z, ψ, θ, φ)を表す外部パ ラメータが存在する. そのうち本研究では, 外部パラ メータを容易に推定する手法の構築に着目する.環境 内に設置されているカメラの外部パラメータを推定す るための様々な手法が提案されているが、3自由度(x, y, φ)の推定にとどまっている[3,4]. そこで, 筆者らは環境 の3次元直線モデルを利用し、6自由度の外部パラメー タを容易にキャリブレーションする手法を提案した[5]. この研究では、画像内の直線情報におけるハフ空間で 定義される画像ディスクリプタを提案し, 3D-2D マッ チングを行う.しかし、カメラ画像に映る直線情報の 構成によっては、ロバストな推定が不可能な場合が存 在する.これらの問題を踏まえ、本研究では先行研究 で提案した直線情報における画像ディスクリプタをさ らに改良し、環境の直線情報の構成に依存しないより ロバストなカメラの外部パラメータ推定手法を提案す る.

2. 画像ディスクリプタの設計

図1に提案する画像ディスクリプタの生成例を示す. 先行研究では,図1(b)に示すように画像内の各直線に対 する原点からの距離と傾き情報のみを量子化されたハ フ空間上にマッピングし,2次元の画像ディスクリプタ として定義した[5]. ここで, *p*dx と*θ*dx はそれぞれ直線 に対する量子化された原点からの距離と傾き情報を意 味する.この画像ディスクリプタは,あるカメラ視点 (6自由度の位置・姿勢)から取得した画像内に存在す る環境中の直線の分布を表現ものであり,カメラの視 点に依存して敏感に変化する特性を持っているため, 外部パラメータの推定に非常に有効な記述子となる. しかし,序論で言及した通り,まだ環境内の直線情報 の構成に性能が依存する問題点が残っているため,本 研究では図 1(c)に示すように各直線に対する線分の長 さ情報をさらに加え,画像ディスクリプタの次元を 2.5 次元に拡張することで,よりロバストな 3D-2D マッチ

Fig. 1 Image descriptor generation: (a) extracted 2D photometric line segments from image data, (b) 2D image descriptor in quantized Hough space [5], and (c) proposed 2.5D image descriptor including normalized length of line segments in quantized Hough space.

Fig. 2 Conceptual image of 3D-2D matching in proposed calibration scheme using image descriptor.

ングの実現を図る.ここで,拡張された成分である Imm は正規化された直線の長さ情報を意味する.画像内の 直線抽出は Canny エッジ検出と確率的ハフ変換を適用 しており,長さを算出する方法としては量子化された ハフ空間上の同じビーンにマッピングされる複数の線 分情報を全て統合し,始点と終点を求めることにより 実装可能である.

3. 3D-2D マッチング

図 2 に提案する画像ディスクリプタを用いた 3D-2D マッチングによるカメラの外部パラメータ推定法の流 れを示す.まず,カメラ画像と 3 次元直線モデル内の 任意視点(6自由度の位置・姿勢)からそれぞれ画像デ ィスクリプタを生成する.次に,実際のカメラ画像か ら生成された画像ディスクリプタと 3 次元直線モデル 内の任意視点における画像ディスクリプタとの類似度 を評価することで,カメラの外部パラメータの推定が 可能である.画像ディスクリプタ間の類似度は earth mover's distance (EMD)[6]を利用して評価する.EMD は 2 つの多次元分布間の類似度を評価する尺度であり, 一部の誤差に対してのロバスト性が高いと知られてい る.すなわち,EMDの評価値が最小となるカメラ視点 が最終的なカメラの外部パラメータの推定結果となる. 本研究では上記の 3D-2D マッチングに基づく外部パ

ネ研究では上記の3D-2D マックシッに基づく外部へ ラメータの推定法として初期値の設定を必要としない パーティクルフィルタを用いる.また,環境知能化の ためのカメラネットワークなどは,一般に屋内環境中 の壁面に設置しなければならない空間上の制約が存在 する.従って,3次元環境モデルの空間占有情報をパー ティクルの位置・姿勢に対する拘束条件として利用可 能であるため,6自由度変数の膨大な解空間を大幅に減 らすことが可能とある.

4. 実験結果

直線の長さ情報を加え 2.5 次元に拡張した画像ディ スクリプタを用いた外部パラメータ推定における有効 性を検証するため、図3に示す環境で比較実験を行っ た. 壁面上に設置した無線 IP カメラの位置・姿勢に対 する真値は(6.80 m, 16.13 m, 1.45 m, 0.0 deg, 19.90 deg, 43.96 deg)であった. ここで、カメラ座標系は図 3(b)の ように定義しており、光軸(x軸)におけるカメラの回 転wは撮影範囲においてほぼ影響がないため, 0.0 deg に固定し実験を行った. 推定にはカメラの 6 自由度の 位置・姿勢情報を有する 5 万個のパーティクルが環境 中における壁面上の全領域に使用された.図4(a)は先行 研究[5]で提案した2次元のハフ空間における画像ディ スクリプタを用いたカメラの外部パラメータ推定結果 である.6自由度における高次元の推定問題は、一般に 非常に多くの極小解が存在するため、この実験結果で は、パーティクルが間違った位置・姿勢に収束し、外 部パラメータの推定(5.92 m, 10.68 m, 0.86 m, 0.0 deg, 16.17 deg, 129.12 deg)が失敗した. 図4 での仮想の画像 は、実際のカメラ画像(図3(b))と、外部パラメータの 推定値を用いて 3 次元環境モデル及び線分情報を画像 平面上に逆投影し合成した結果である.図4(a)の結果お いて,実際の画像内の線分と,間違った位置・姿勢の 推定値から逆投影された仮想の画像内の線分に対する 原点からの距離及び傾きの分布がかなり類似している ことが分かる.両方からの線分の長さ分布は結構異な っているものの線分の長さ情報は先行研究における画 像ディスクリプタには反映されていないため、この結 果は環境に依存して生じうる手法の限界点を示す.

Fig. 3 Experimental setup: (a) experimental environment, (b) wireless IP camera installed on wall, and (c) captured image data from wireless IP camera.

Fig. 4 Experimental results for several stages of particle filter: (a) using 2D image descriptor in quantized Hough space [5] and (b) using proposed 2.5D image descriptor including normalized length of lines in quantized Hough space.

一方,本研究で提案した線分の長さ情報を含む 2.5 次 元画像ディスクリプタを用いたカメラの外部パラメー タ推定結果を図 4(b)に示す.この実験結果では,極小解 に陥づ,パーティクルが正しい位置・姿勢に収束し, 真値に近い外部パラメータの推定(6.78 m, 16.14 m, 1.41 m, 0.0 deg, 19.62 deg, -42.01 deg)が行われた.パー ティクル収束後の合成画像の結果を見ると両方からの 線分の分布もほぼ一致していることが分かる.

5. 結論

本研究では、環境知能化のために環境内の壁面上に 設置されたカメラの外部パラメータ(6自由度の位置・ 姿勢)を、3次元環境モデルを利用し容易にキャリブレ ーションする手法を提案した.先行研究[5]で提案した 画像内の直線の分布を表現するための量子化されたハ フ空間上で定義される2次元の画像ディスクリプタを、 線分の長さ情報を加え2.5次元に拡張することで、環境 内の直線情報の構成に依存したい3D-2Dマッチングが 実現でき、外部パラメータ推定のロバスト性を飛躍的 に向上させた.

今後の展望としては,実際のカメラ画像から正確な 線分情報を抽出するための Canny エッジ検出や確率的 ハフ変換における自動パラメータ調整手法が考えられ る.特に,照明条件などによっては肉眼による判断が 不可欠である場合も存在するため,より安定的に線分 の自動検出が可能な手法の確立が必要である.

参考文献

- J.-H. Lee and H. Hashimoto, "Intelligent Space-concept and contents," *Advanced Robotics*, vol. 16, no. 3, pp. 265–280, 2002.
- [2] T. Sato, Y. Nishida, H. Mizoguchi, Robotic Room: Symbiosis with Human through Behavior Media, *Robotic and Autonomous Systems*, vol. 18, pp. 185–194, 1996.
- [3] A. Rahimi, B. Dunagan, and T. Darrell, "Simultaneous Calibration and Tracking with a Network of Non-Overlapping Sensors," *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, vol. 1, pp. 187–194, 2004.
- [4] S. Funiak, C. Guestrin, M. Paskin, and R. Sukthankar, "Distributed Localization of Networked Cameras," *Proceedings of the 5th International Conference on Information Processing in Sensor Networks*, pp. 34–42, 2006.
- [5] Y. Ji, A. Yamashita, and H. Asama, "Automatic Calibration of Camera Sensor Network Based on 3D Texture Map Information," *Robotics and Autonomous Systems*, Vol. 87, pp. 313-328, 2017.
- [6] Y. Rubner, C. Tomasi, L. J. Guibas, "A Metric for Distributions with Applications to Image Databases," *Proceedings of the 6th IEEE International Conference* on Computer Vision, pp. 59–66, 1998.