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Abstract— This study presents a novel apprenticeship learn-
ing method to enable a learner to utilize demonstrations
observed in an incompatible feature space. It is assumed that
an expert and a learner follow non-identical Markov decision
processes (MDPs), and a mapping function is estimated to
obtain feature expectation of the demonstrations in an agent
space. A conditional density estimation technique is used to
represent the feature expectation in closed-form. The proposed
method is useful because it is expected to alleviate intractable
processes to explicitly specify correspondence of heterogeneous
MDPs for apprenticeship learning. Additionally, the method
does not require any sampling method to approximate integrals
over an agent feature space. A simulation is used to demonstrate
the validity of the proposed method in three domains in which
it is not possible to directly compare the features of the expert
and learner.

I. INTRODUCTION

Reinforcement Learning (RL) [1] is actively studied as a

tool for the development of a fully autonomous and adaptive

robot control system. Specifically, RL is a general framework

to learn control policy from collected experience obtained

from interaction between a robot and its environment. The

objective of RL involves maximizing the expected cumula-

tive reward signal that is received by the robot as a conse-

quence of each decision made by the robot. The effectiveness

of RL for robotic control problems is demonstrated in large

studies [2], [3], [4].

Although RL has favorable characteristics with respect to

robotics, open problems persist for practical use scenarios.

A fundamental problem involves the design of a reward

function that encodes a task given to the robot. Typically, a

reward function is specified by manual coding. The design of

the reward function strongly affects learning performance of

the robot. Therefore, the provision of an appropriate reward

function is a cumbersome task for a designer. Extant research

proposed potential solutions to the fore-mentioned problem

by developing Inverse Reinforcement Learning (IRL) and

Apprenticeship Learning (AL) [5], [6], [7]. RL learns policy

based on a reward function. Conversely, IRL estimates a

reward function based on observed demonstrations of experts

in which the experts are assumed to know (nearly) optimal

policy for the given task. The objective of an AL framework

is to recover the policy of an expert. In order to recover the

policy, an AL agent first estimates a reward function using

IRL and then learns policy by using a forward RL procedure

with the estimated reward function. AL has particularly use-

ful properties for robotic control problem, and we consider an
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extremely useful advantage of using AL is its generalization

capability.

In [6], Abbeel stated that a reward function is “the most

succinct, robust, and transferable definition of the task.”

Direct imitation learning methods mimic policy. In contrast,

AL abstracts the demonstration as a reward function (that

is analogous to the intention of an expert). The policy

is then crystallized using forward RL based on a robot’s

experience. Hence, the policy is re-constructed via the ex-

perience of the robot instead of observations of the expert

itself. The property leads to remarkable capability with AL

since it enables the robot to generalize its policy to regions

in which demonstrations are not observed. Currently, the

fore-mentioned advantage is enhanced as an extension to

incomplete and noisy demonstrations [8], [9].

In this study, another challenge is considered to generalize

the AL framework. It is assumed that a feature observed

from an expert and a feature used to represent the estimated

reward function are not identical. In this case, it is not

possible to directly apply most IRL procedures such as

feature matching [6]. Discrepancy in features often appears

if dynamics or environment of an expert and a robot are not

identical. This is almost always applicable with respect to the

imitation learning of human behavior by robots. Generally, a

system designer is required to create a handcrafted common

feature to overcome a discrepancy by intuition. However,

this potentially limits AL applications to only carefully pre-

specified tasks.

Fig. 1 depicts an illustrative example of discrepancy of

features that arises from a difference in body structures of the

robots. As is widely known, a bottleneck of RL in robotics

corresponds to learning speed. This is mainly due to the

difficulty in collecting relevant samples with respect to a

specific robot and a specific environment. Thus, a reward

function is important in enabling efficient exploration. The

present study focuses on eliminating the fore-mentioned AL

limitation.

A novel AL procedure is proposed in this study to alleviate

the limitation. A conditional density estimation technique

is utilized for the feature matching framework. Feature

expectation of demonstrations is represented in a learner’s

feature space by estimating the conditional density of an

expert’s feature in the learner’s feature space. The reward

function is then estimated by using IRL. Finally, forward RL

is used to learn policy from the estimated reward function.

The validity of the proposed method is verified through

simulations in three domains. The results indicated that

the proposed method is useful because it is simple and

computationally efficient. Hereinafter, the term “agent” is
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(a) Generalization of policy in AL

(b) Discrepancy in feature space

Fig. 1: The objective of robots involves controlling joint

angles as specified in the figure. (a) A learner possesses

a scaled-up body of an expert and holds an object with

its end effector. However, an expert can transfer its reward

function if they share a feature with the learner such as e.g.
angular information of corresponding joints. The learner then

can convert the reward function into its localized policy. (b)

An illustrative example of discrepancy in features due to

differences in the body structure. It is not possible to apply

IRL without a carefully designed relevant feature.

used to denote a learner of AL instead of a robot.

II. PRELIMINARIES

It is assumed that the problem in the study is formalized

as a Markov decision process (MDP) that is represented by

a tuple (S,A, T,R, d0, γ). Specifically, S denotes a set of

states; A denotes a set of actions; T (s, a, s′) = Pr(st+1 =
s′|st = s, at = a) denotes a transition probability from a

state s ∈ S to the next state s′ ∈ S under action a; R denotes

the reward function; d0 denotes an initial state distribution;

and γ ∈ [0, 1) denotes a discount rate. A stochastic policy

π(s, a) : S × A �→ [0, 1] assigns a probability of selecting

an action a in state s. The objective of RL is to obtain

an optimal policy π∗ that maximizes the expected return

E[
∑∞

t=0 γ
tR(st, at)|d0, π, T ], i.e., the value function V π(s).

The objective of IRL is to estimate a reward function

based on expert demonstrations. Therefore, MDP without a

reward function MDP\R is assumed. The reward function is

represented by a linear combination of a parameter vector θ
and a feature vector. A feature vector of the expert is denoted

by x ∈ R
dX , and a feature vector of the agent is denoted

by y ∈ R
dY . The estimate of the reward function is then

represented as follows: R̂(s, a) :=
∑dY

i=1 θiyi(s, a), where

yi and θi denote the ith element of y and θ, respectively.

The expected feature under policy π is denoted as follows:

yπi = E[
∑∞

t=0 γ
tyi(st, at)|d0, π, T ]. This notation simplifies

the value function; V π(s) =
∑dY

i=1 θiy
π
i (s, a).

III. METHOD

It is assumed that the reward function is estimated by

IRL based on feature matching, which is potentially the

most common framework used in extant literature. First,

conditional density estimator of y given x is trained using

paired samples. Second, feature expectation in an agent’s

feature space is estimated using demonstrations observed in

an expert’s feature space. The feature expectation is used to

estimate the reward function by IRL. Finally, policy is re-

covered from the estimated reward function by implementing

forward RL.

A. Feature Matching in AL

A summary of feature matching in AL is first presented.

As stated above, it is assumed that a reward function is

represented by a linear combination of θ and x and that

the value function can then be represented by θ and an

expectation of features. A constraint is imposed in feature

matching as follows:

‖θTxπE − θTxπ‖ ≤ ε, (1)

where xπE denotes the expected feature observed from the

policy of an expert πE , and ε ∈ R+ denotes a margin

between the two value functions. xπE is often given in

terms of an empirical estimate. The parameter vector θ
is optimized under the constraint in eq.(1) to match the

observed behavior of the expert (πE) and the agent (π). The

formulation evidently relies on the assumption that the expert

and agent share the same feature space. The assumption is

relaxed, and it is assumed that the feature of the expert

x ∈ X is not compatible with that of the agent y ∈ Y .

One of the simplest approaches to handle the incompati-

bility of features involves mapping the feature of the expert

x into the feature space of the agent Y . Our objective then is

to obtain ŷ := E
p(y)

[y] from a set of observed demonstrations

{x1, · · · ,xn}.

B. Conditional Density Estimation

It is not possible to obtain the feature expectation in an

agent feature space ŷ in the problem stated in the present

study because the demonstrations are given in the expert

feature space. As opposed to using an empirical estimate

of an expert’s feature expectation as a usual IRL, it is

marginalized as follows:

ŷ =

∫
yp(y)dy

=

∫∫
yp(y|x)p(x)dxdy. (2)

Additionally, p(y|x) is estimated by using some paired

samples {xc
i ,y

c
i }nc

i=1. It is assumed that the paired samples
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are given a priori and assumed as relevant irrespective of the

given tasks 1.

A Least-Squares Conditional Density Estimation

(LSCDE) [10] is used as an estimator of conditional density

p(y|x). LSCDE does not directly estimate conditional

density. It estimates density ratio ρ(x,y) of p(x,y) to

p(x) as opposed to naively estimating p(x,y) and p(x) as

follows:

ρ(x,y) :=
p(x,y)

p(x)

= p(y|x). (3)

The estimation of the density ratio enables the avoidance

of large errors in the ratio obtained from a naively es-

timated p(x,y) and p(x). As is known, naive standard

density estimation techniques [11] tend to be unreliable and

especially in the case of a high dimensional problem. The

conditional density is approximated by a linear combination

of parameters α ∈ R
b and basis functions φ : X × Y → R

b

as follows:

ρ̂α(x,y) := αTφ(x,y). (4)

It should be noted that ρ̂α corresponds to the value that is not

normalized. Please refer to [10] for more details on LSCDE.

Next, an estimate of the feature expectation is derived in an

agent feature space by using LSCDE.

C. Feature Expectation in Agent Feature Space

The estimated density ratio ρ̂α is used to approximate

the feature expectation ŷ in eq.(2). A Gaussian kernel is

assumed, and its jth element is defined as follows:

φj(x,y) := exp

(
−‖x− uj‖2

2σ2

)
exp

(
−‖y − vj‖2

2σ2

)
,

(5)

where uj ∈ X and vj ∈ Y denote center points, and σ ∈ R+

denotes Gaussian width.

The probability density of y is then represented as follows:

p(y) =

∫
p(y|x)p(x)dx

≈
∫

ρ̂α(x,y)∫
ρ̂α(x,y′)dy′ p(x)dx

≈ 1

n

n∑
i=1

ρ̂α(xi,y)∫
ρ̂α(xi,y′)dy′ , (6)

where {xi}ni=1 denotes a demonstration by an expert. The

integral in a normalizing constant Z(xi) :=
∫
ρ̂α(xi,y

′)dy′

can be analytically solved. The feature expectation in an

1The fore-mentioned assumption could be rather strong. Although this is
not discussed with respect to a specific application in this study, the prospect
for a robotic control problem is described in IV-D.

agent feature space is then obtained using eq.(6) as follows:

ŷ =

∫
yp(y)dy

≈ 1

n

n∑
i=1

1

Z(xi)

∫
yαTφ(xi,y)dy

=
1

n

n∑
i=1

b∑
j=1

1

Z(xi)
exp

(
−‖xi − uj‖2

2σ2

)

∫
yαj exp

(
−‖y − vj‖2

2σ2

)
dy

=
1

n

n∑
i=1

b∑
j=1

αj exp
(
−‖xi−uj‖2

2σ2

)
∑b

k=1 αk exp
(
−‖xi−uk‖2

2σ2

)vj . (7)

Thus, a closed form solution as shown in eq.(7) is obtained in

a case in which the Gaussian kernel is chosen. The Gaussian

kernel in an expert feature space is weighted by αj and

composes a soft-max like activation function. Each center

point of the basis function in the agent feature space vj is

then activated by xi, which is observed from a demonstration

of an expert. Finally, the center points are averaged over

all demonstrated feature samples. It is possible to efficiently

compute the feature expectation in eq.(7) because it does

not require a sampling method to approximate integrals over

agent feature space.

D. Recovering Policy

An arbitrary IRL method can be implemented for reward

estimation if it relies on ŷ or p̂(y). In this study, Relative

Entropy Inverse Reinforcement Learning (REIRL) [12] is

used. REIRL is model-free and does not require an iterative

forward RL procedure. Any RL is also applicable, and clas-

sical value iteration [1] is used in the following simulations.

The AL proposed in the study is favorable because it involves

a fairly straightforward structure and is easy to implement.

An overview of the entire procedure is shown in Algorithm

1 as follows:

Algorithm 1 Procedure of the proposed AL

1: input: {(xc
i ,y

c
i )}nc

i=1, {xi}ni=1

2: output: π
3: (α,u,v, σ) = LSCDE(xc,yc) # train conditional den-

sity estimator

4: Estimate ŷ by eq.(7) # mean for {xi}ni=1

5: Estimate reward function IRL

6: Learn policy by forward RL

IV. SIMULATION

Simulations are performed in three domains to verify the

validity of proposed AL. A simulation corresponds to 3D to
2D grid world domain in which an expert is in a 3D grid

world and agent is in a 2D grid world. The correspondence

between X and Y is clear in the above scenario, and thus

the result can be quantitatively evaluated. Another simulation
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corresponds to simplified link arms domain in which an

expert is a 2-link jointed arm and an agent is a 3-link

jointed arm, which result in different body structures. In

this scenario, it is not possible to clearly illustrate the

correspondence between X and Y . Thus, empirical results

are provided for the discussion to apply the proposed method

to a heterogeneous real system. Finally, a demonstration is

performed to extend the results in Mountain-car to Pendulum
domain in a continuous state and action space. The proposed

method is also compared with a method that uses linear

regression to obtain inter-feature mapping. The final purpose

involves controlling a robot (possibly high dimensional) in

which it is difficult to manually design the reward function.

However, a principled method to address the corresponding

points is required for a fair evaluation of the method pre-

sented in this study. This continues to be an open problem,

and thus, a straightforward domain is selected in the study.

The problem of the corresponding point is discussed in

section IV-D.

A. 3D to 2D Grid World domain

1) Settings: The expert / agent is in a 3D / 2D grid world

in which its features are represented as x = (xe, ye, ze) ∈
[1, 15]3 / y = (xa, ya) ∈ [1, 15]2. It is assumed that (xa, ya)
corresponds to a normally projected point of (xe, ye, ze)
on a xaya-plane. Thus, the objective of the agent involves

learning the relationship (xa, ya) = (xe, ye) and estimating

an underlying reward function to recover the corresponding

policy.

Each axis was equally divided by 15 for discretization pur-

poses. Available actions included moving [−1, 0, 1] for every

axis, i.e. the expert and agent involved 33 and 32 actions,

respectively. The true reward function for expert yielded 1

in the goal state xg and 0 otherwise. The demonstrations

involved 30 trajectories. Each trajectory was sampled by

using an optimal policy with uniformly distributed random

initial states. The number of paired samples corresponded to

100. The paired samples were obtained from {yi}100i=1, which

were drawn from a uniform distribution over an agent feature

space.

The number of kernels corresponded to 100; and a param-

eter for regularization in LSCDE and σ were selected from

log-spaced values by five-fold cross-validation. Additionally,

ui and vj were randomly selected from the given paired

samples.

Parameters of the REIRL were determined as the discount

rate γ = 0.98, and the margin for feature matching ε = 0.05.

We performed the simulations under the following three

conditions: a) xg = (7, 7, 7); b) xg = (12, 12, 3); and c)

xg = (12, 12, 12). Furthermore, with respect to upper and

lower baselines, the following were executed: 1) REIRL

given optimal trajectories in an agent feature space and

2) REIRL given randomly sampled trajectories. In 2), the

trajectories were sampled by a uniform distribution over

action space. Thus, the result should indicate the lower bound

of performance. Each condition was tested 20 times.

TABLE I: Results of policy loss L[10−2] for each x̂g .

(7,7,7) (12,12,3) (12,12,12)

Proposed (mean) 1.62 1.45 1.83

Proposed (sd) 0.73 0.64 0.86

Optimal (mean) 0 0 0

Optimal (sd) 0 0 0

Random (mean) 5.16 7.38 7.75

Random (sd) 1.92 2.91 2.43

TABLE II: Results of terminal state for each x̂g . x and y
represent horizontal axis and vertical axis, respectively, in

the agent feature space(see Fig. 2).

(7, 7, 7) (12, 12, 3) (12, 12, 12)

x y x y x y

Proposed (mean) 6.9 7.0 11.8 11.8 11.5 11.7

Proposed (sd) 1.3 0.8 0.9 1.1 1.4 1.2

Optimal (mean) 7.0 7.0 12.0 12.0 12.0 12.0

Optimal (sd) 0.0 0.0 0.0 0.0 0.0 0.0

Random (mean) 7.6 8.2 8.0 7.4 8.0 5.7

Random (sd) 2.8 3.8 4.9 4.3 4.2 4.2

2) Results: The variant of policy loss L [13] (we call

simply policy loss hereinafter) is evaluated, and a state in

which the reward function corresponds to the highest value

ŷg is given. The policy loss represents a similarity between

the recovered policy and optimal policy in the simulation.

The difference from the original policy loss involves using

a value function learned from an estimated reward function.

The state corresponding to the highest reward coincides with

a terminal state.

Table I shows results with respect to policy loss. It should

be noted that each value function is normalized. Table II

shows results with respect to the terminal state. The results

indicate that it is possible to recover an almost perfect

policy given access to demonstrations in the agent space.

The terminal states had a tendency to assume smaller values

than that in the true terminal state in case of (12, 12, 3)
and (12, 12, 12). The goal states were positioned near the

corner of grid world in the above two conditions, and the

demonstrations were sampled from randomly chosen initial

states. Thus, the distribution of features involved a spatial

bias. By considering the above fact, the proposed method

is capable of recovering an appropriate policy even if the

feature spaces of the expert and agent differ from each other.

Fig. 2 depicts the averaged reward function estimated by

the proposed method. It is observed that the estimated reward

function assumes the highest value at the corresponding goal

state in each condition.

The proposed method is also tested while varying the num-

ber of corresponding points. Table III shows the mean and

standard deviation of policy loss in which xg = (12, 12, 12).
The result indicates that the method can reliably estimate

the reward function as the number of corresponding points
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(a) xg = (7, 7, 7) (b) xg = (12, 12, 3)

(c) xg = (12, 12, 12)

Fig. 2: Mean reward function.

TABLE III: Results of policy loss L[10−2] for the varying

number of corresponding points.

# of points 10 25 50 100 150 200

mean 4.49 2.84 1.35 1.59 1.54 1.31

sd 1.53 1.78 0.76 0.69 0.66 0.68

increases. The number of states corresponds to 3375 in the

3D space and 225 in the 2D space. Given that the points

were sampled by a uniform distribution, the proposed method

appears to possess a fairly good generalization ability.

B. Link Arms domain

1) Settings: This is followed by investigating the manner

in which the difference in body structure of the expert and

agent affect the performance of the proposed method. The

expert / agent corresponds to a simplified planar 2 / 3-link

arm. All link lengths correspond to 1; and thus there are

differences in the degree of freedom and complete length

between the expert and the agent. The features correspond to

the end-point position of each link, and the states correspond

to tuples of joint angles.

Each joint angle was equally divided by 16 for discretiza-

tion purposes. Each link was able to independently execute

actions to stay or transit to an adjacent joint angle. However,

in the study, a transition was prohibited to a state in which

jointed links conflict with each other. It should be noted that

it may not represent explicit correspondence between the

expert and agent in the domain. Therefore, paired samples

were generated by an intuitively straightforward correspon-

dence between the expert and agent as shown in Fig. 3. Three

postures are depicted in the figure. Each posture in the left

and right figures is denoted by color. The basic three postures

were rotated around the origin, and 3 × 16 paired samples

Fig. 3: The given paired samples. Blue, red, and black pairs

are rotated around the origin.

TABLE IV: Results of the end-point position for each link.

1st 2nd 3rd

x y x y x y

Proposed (mean) 0.04 0.95 0.05 1.84 0.13 2.72

Proposed (sd) 0.32 0.07 0.43 0.12 0.42 0.16

Optimal (mean) 0.00 1.00 0.00 2.00 0.00 3.00

Optimal (sd) 0.00 0.00 0.00 0.00 0.00 0.00

Random (mean) 0.10 -0.15 0.28 -0.35 0.13 -0.13

Random (sd) 0.76 0.67 1.24 1.12 1.65 1.24

were obtained. The other settings were the same as those in

section IV-A.

2) Results: The following two tasks were assigned to the

expert: a) true reward function of the expert corresponding

to 1 at (π/2, π/2), and b) (π/4, π/2), otherwise 0. A goal

in condition a) coincides with one of the paired samples.

Therefore, the simulations involve investigating the terminal

end-point position of links for a) and terminal posture by

recovered policy for b).

The end-point position in condition a) is shown in Ta-

ble IV. In order to obtain the terminal states, estimated policy

with initial states (−π/2,−π/2,−π/2) was used. An almost

perfect terminal state was recovered by using a direct IRL

procedure with optimal demonstrations. It is confirmed that

the proposed method approximately estimated an accurate

reward function although there were differences in the feature

spaces of the expert and agent in terms of dimensionality

and body length. The number of paired samples was fewer

when compared with that in a grid world domain. Thus,

the decrease in performance of the proposed method over

Optimal case is mainly due to the number and distribution

of paired samples.

Fig. 4 illustrates the averaged terminal posture in condition

b). The agent appears to appropriately interpolate among the

paired samples to achieve a posture analogous to that of the

expert.

C. Mountain-car to Pendulum domain

1) Settings: Another simulation is performed in which

the reward function is transferred from demonstrations in

mountain-car problem to a pendulum swing-up problem. The

state and action space are continuous in both problems. In
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Fig. 4: Mean terminal state obtained by the proposed method.

Black lines represent the terminal state of the expert; red

lines represent an initial state of the agent; and blue lines

represent the averaged terminal state of the agent.

this domain, it is difficult to obtain a correspondence in

the feature space of the expert and agent. However, they

should both possess cyclic movements to achieve given tasks.

Therefore, it is tested as to whether the proposed method can

specify the implicit correspondence. This is assumed as the

case in realistic robotic control problems.

In this study, a heuristic approach was adopted to sample

the corresponding points. First, the start and terminal state

of trajectories were specified (they correspond to the start

and terminal state that satisfy the terminal conditions of

tasks). Second, trajectories that passed the start and terminal

state were sampled based on arbitrary policy. A Gaussian

exploration policy was used for the agent (mountain-car),

and one of the demonstrations was used for the expert

(pendulumn). Finally, the two trajectories were normalized

with respect to the time step, and the corresponding points

were then sampled from interpolated trajectories. For com-

parison purposes, linear regression was implemented using

the corresponding points to obtain maps on the feature space.

Deterministic policy gradient [14] with RBF features was

used to obtain policy from the estimated reward function.

The number of trials corresponded to 5. The other settings

were the same as those in section IV-A.

2) Results: Fig. 5 depicts the averaged learning curves

over 5 trials in which the horizontal axis represents an

episode, and the vertical axis represents time steps in an

episode. The blue area corresponds to the proposed method;

and the red area corresponds to the linear regression case.

Both learning curves are smoothed by a moving average filter

with a window size of 50. It should be noted that the results

were obtained from a stochastic Gaussian policy with a fixed

variance. The findings confirmed that the proposed method

learned a successful deterministic policy across all trials.

Linear regressed mapping improved the policy slowly.

However, the proposed method found a reasonable policy

faster. The results indicate that the proposed method is at

least partially successful in mapping implicit correspondence

between the two cyclic movements. It is considered that one

of the advantages of the proposed method involves utilizing

Fig. 5: Time steps over episodes. Blue line represents

learning curve of the proposed method; red line represents

learning curve using linear regression.

the generalization ability of RL even if the mapping is not

completely thorough with respect to the complete feature

space.

D. Discussion

An intuitive method to quantitatively evaluate the results

in Fig. 4, 5 is not evident because it is not possible to define

the correspondence between the expert and the agent unless

a clear criterion is provided. This may be a strong limitation

of the proposed method. Although it is not possible for

the proposed method to provide an ideal transfer for the

system designer 2 , this possibly reproduces “meaningful”

behavior. Thus, we consider to combine the proposed method

with active learning [15] to refine the rough behavior. This

framework may reduce supervision cost. Another expected

benefit relates to data efficiency as noted in section I. The

proposed method aids in accelerating the learning of RL

agents, and especially in an early phase of learning. It is

expected that this functionality is fundamental for robot

control by RL.

There continues to be scope for improvement in the

method: a) large difference in the dimensionality of feature

space, and b) a procedure to obtain paired samples in

a real robot control problem. The former problem poten-

tially increases the necessary amount of paired samples.

The utilization of dimensionality reduction technique could

alleviate the problem. The latter is more fundamental in

practice. There are many possible scenarios depending on

applications. A method involves designing a baseline task

to generate paired “trajectories” rather than “points” (this is

performed in a relatively heuristic manner in the Mountain-

car to Pendulum domain). The most reliable approach cor-

responds to kinesthetic teaching. Another method involves

extending the proposed framework to multi-agent systems.

A known mediator can be used to estimate the intention of

another subject.

2This is inevitable because the “ideal” depends on our subjective view
in case we consider systems composed of heterogeneous agents including
various robots and humans.
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The problem addressed in this study may corresponds

to correspondence problem. As stated in a previous study,

with respect to the transfer of skill by observation, behavior

must already exist within an individual’s repertoire to be

facilitated [16]. Thus, it is expected that the observation

should be mapped on an individual’s feature space to facili-

tate learning via reward estimation. Alissandrakis approached

the correspondence problem by creating a corresponding

library [17]. This is different from the proposed approach in

which an attempt is made to determine a reward function as

opposed to simply determining correspondence, i.e., relying

on the generalization ability of forward RL. A study by

Englert proposed directly matching robot trajectories with

demonstrations [18]. The present study mainly focuses on

differences in actuation, that is, on learning a robot controller

from a learned probabilistic system model.

To the best of the authors knowledge, previous studies

of apprenticeship learning do not focus on the problem

stated in the present study. However, similar arguments were

presented in extant literature related to transfer learning [19].

For example, a study by Dai presented translated learning
to transfer knowledge between different feature spaces [20].

The method is formulated as risk-minimization, and it

demonstrates favorable results with respect to classification

problem. Translated learning requires a paired sample (co-

occurrence data) as is the case with the proposed method.

However, there are transfer learning techniques that do not

use paired samples [21]. A connection to these methods is

promising in addressing the control problem of real robots.

Additionally, the proposed method can be combined with

a state-of-the-art IRL based on distribution matching [22].

The proposed method relies on standard feature matching.

Nevertheless, the study uses a probability distribution as a

method to model expert behavior. Thus, it could be linked

with the proposed approach that uses a conditional density

estimation.

V. CONCLUSIONS

In this study, apprenticeship learning in distinct feature

space is introduced in which an agent and an expert follow

non-identical MDPs. In order to estimate the reward function

in the scenario, a conditional density estimation technique

is utilized to obtain feature expectation in an agent feature

space. The feature expectation is represented in a closed-

form. The proposed method is useful because it is simple and

computationally efficient. Simulation results demonstrate that

the proposed method enables the agent to infer reasonable

policy from the expert although the MDP of the expert differs

from that of the agent.

It is expected that the proposed method can be used for

knowledge transfer among heterogeneous agents including

robots and humans. Therefore, a future study will involve

experiments on a real robot. It is expected that the proposed

approach will contribute to improving the learning speed

of forward RL by providing information that is useful for

exploration purposes.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant

Number 16K16132.

REFERENCES

[1] M. Wiering, M. van Otterlo, Reinforcement learning: State of the art,
Springer-Verlag, 2012.

[2] J. Peters, S. Schaal, Natural actor-critic, Journal of Neurocomputing,
vol.71, no.7, pp.1180–1190, 2008.

[3] E. Theodorou, J. Buchli, S. Schaal, A generalized path integral control
approach to reinforcement learning, Journal of Machine Learning
Research, vol.11, pp.3137–3181, 2010.

[4] J. Kober, J.A. Bagnell, J. Peters, Reinforcement learning in robotics: A
survey, The Int. Journal of Robotics Research, vol.32, no.11, pp.1238–
1274, 2013.

[5] A. Ng, S. Russell, Algorithms for inverse reinforcement learning, Proc.
of the 17th Int. Conf. on Machine Learning, pp.663–670, 2000.

[6] P. Abbeel, A. Ng, Apprenticeship learning via inverse reinforcement
learning, Proc. of the 21st ACM Int. Conf. on Machine Learning, 2004.

[7] N. Ratliff, J. Bagnell, M. Zinkevich, Maximum margin planning, Proc.
of the 23rd Int. Conf. on Machine Learning, pp.729–736, 2006.

[8] U. Syed, R.E. Schapire, A game-theoretic approach to apprenticeship
learning, Advances in Neural Information Processing Systems 20,
pp.1449–1456, 2008.

[9] B. Michini, J.P. How, Improving the efficiency of Bayesian inverse
reinforcement learning, Proc. of the 29th IEEE Int. Conf. on Robotics
and Automation, pp.3651–3656, 2012.

[10] M. Sugiyama, I. Takeuchi, T. Kanamori, T. Suzuki, H. Hachiya, D.
Okanohara, Least-squares conditional density estimation, IEICE Trans.
on Information and Systems, vol.E93-D, no.3, pp.583–594, 2010.

[11] R.C.L. Wolff, Q. Yao, P. Hall, Methods for estimating a conditional
distribution function, Journal of the American Statistical Association,
vol.94, no.445, pp.154–163, 1999.

[12] A. Boularias, J. Kober, J. Peters, Relative entropy inverse reinforce-
ment learning, Proc. of the 14th Int. Conf. on Artificial Intelligence
and Statistics, pp.182–189, 2011.

[13] D. Ramachandran, E. Amir, Bayesian inverse reinforcement learning,
Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, pp.2586–
2591, 2007.

[14] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, M. Riedmiller,
Deterministic policy gradient algorithms, International Conference on
Machine Learning, 2014.

[15] M. Lopes, F. Melo, L. Montesano, Active learning for reward esti-
mation in inverse reinforcement learning, Proc. of the 2009 European
Conf. on Machine Learning, pp.31–46, 2009.

[16] R.W. Byrne, Imitation as behaviour parsing, Philosophical Transac-
tions of the Royal Society of London B: Biological Sciences, vol.358,
no.1431, pp.529–536, 2003.

[17] A. Alissandrakis, C.L. Nehaniv, K. Dautenhahn, Solving the corre-
spondence problem in robotic imitation across embodiments: syn-
chrony, perception and culture in artifacts, Imitation and Social Learn-
ing in Robots, Humans and Animals, chap. 12, pp.249–273, 2007.

[18] P. Englert, A. Paraschos, J. Peters, M.P. Deisenroth, Probabilistic
model-based imitation learning, Adaptive Behavior, vol.21, no.5,
pp.388–403, 2013.

[19] S. Pan, Q. Yang, A survey on transfer learning, IEEE Trans. on
Knowledge and Data Engineering, vol.22, no.10, pp.1345–1359, 2010.

[20] W. Dai, Y. Chen, G. Xue, Q. Yang, Y. Yu, Translated learning: Transfer
learning across different feature spaces, Proc. of Advances in Neural
Information Processing Systems 21, pp.353–360, 2009.

[21] K.D. Feuz, D.J. Cook, Transfer learning across feature-rich hetero-
geneous feature spaces via Feature-Space Remapping (FSR), ACM
Trans. on Intelligent Systems and Technology, vol.6, no.1, pp.1–27,
2015.

[22] O. Arenz, H. Abdulsamad, G. Neumann, Optimal control and inverse
optimal control by distribution matching, International Conference on
Intelligent Robots and Systems, pp.4046–4053, 2016.

938



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


