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Abstract—Planetary exploration rovers face severe energy and
safety restrictions, which have a strong connection with terrain
slopes. During a steep slope traverse, a rover consumes more
power and is exposed to higher risks of getting stuck or of
overturning. It is essential for a rover to autonomously recognize
and avoid steep slopes for efficient and safe operations. Exist-
ing techniques (e.g. stereo vision) do not completely address
challenges in planetary exploration, such as low-textured terrain
appearance and computational resource limitations. This paper
presents a novel slope estimation method using a monocular
infrared camera. The proposed method estimates slope normals
based on surface temperatures on two different slopes. The
surface energy model is employed to correlate thermal proper-
ties to geometrical properties of the terrain. The idea behind
this approach is that the solar radiation, which is a major
energy source for terrains, can differ by time, slope angles and
directions. The difference in energy input generates the gap
of surface temperatures between target and reference surfaces,
which can be remotely detected with an infrared camera. The
proposed method avoids the problem of terrain appearance as it
only uses temperature measurements, and is also computation-
ally efficient thanks to efficient preprocessing. The algorithm
is validated through simulations and outdoor experiments. The
results show the effectiveness of the proposed scheme to estimate
terrain slope normals solely from temperature measurements.
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1. INTRODUCTION
The detailed exploration of planetary surfaces has been con-
ducted in the last decades using mobile platforms called
rovers. The strength of rovers lies in the possibility to
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Figure 1. An example of low-textured terrain on Mars
(Image by NASA/JPL)

travel over many kilometers while carrying scientific instru-
ments to detect and investigate geological interests in another
planet. However, the mobility on planetary surfaces brings
challenges with it, especially on slopes. A wheeled vehicle
can easily lose its mobility on a steep slope due to the
loss of traction or kinematic stability. For example, the
Mars Exploration Rover (MER) Spirit has ended its mission
by losing wheel’s traction with soft soil on a slope. An-
other challenge arises from limited energy availability. If
a rover consumes excessive energy along a slope traversal
and reduces its travel distance per time, it will decrease
the possibility to accomplish all assigned tasks in a limited
mission timeline. Therefore, it is essential for a rover to
autonomously recognize and avoid steep slopes for safe and
efficient exploration.

The slope detection problem is an instance of geometrical re-
construction problems, which have been extensively studied
in the field of computer vision. In the context of planetary
exploration, the slope analysis is typically performed with
stereo matching of visible images [1], [2], [3]. Various
methods have been proposed in the literature, some of which
are compared in [4]. The estimation accuracy of visual
stereo matching degrades in low-textured terrain due to the
lack of salient features (see Figure 1 for an example of low-
textured terrain appearance). There are other approaches such
as laser range finders [5] and shape from shading [6], [7];
however, these methods have limitations including the high
power consumption and the heavy computational cost.
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(a) Visual image

(b) Thermal image

Figure 2. Visual and thermal images at the same U-shaped
slope

In terms of the computational cost, Spirit rover and Mars
Science Laboratory (MSL) Curiosity rover have a 22-MIPS,
20 [MHz], RAD6000 CPU and a 400-MIPS, 200 [MHz],
RAD750 CPU, respectively. The performance of these CPU
is much lower than that of the modern one, therefore it is
important for the rovers to reduce the computational cost.

This paper proposes a new terrain slope estimation method
using a monocular infrared camera. The proposed method is
based on the observation that the energy input in each terrain
region varies depending on the solar incidence angle, and that
this energy gap appears as a difference in thermal properties.
Figure 2 shows a thermal image of a U-shaped slope captured
by an infrared camera. The terrain regions perpendicular to
the solar ray direction (image left) has higher temperature
measurements than the other regions (right).

In order to formulate the relationship between the thermal
and geometrical properties of a terrain, an approach using
a surface energy model and a celestial motion model is
proposed. Specifically, the proposed method estimates the
normal vector of inclined surface by comparing model- and
measurement-based energy amounts. The proposed method
can avoid the problem of terrain appearance since it relies
only on the surface temperature. The proposed scheme is also
computationally efficient by leveraging preprocessing.

The rest of this paper is organized as follows. Section 2
explains the energy balance model of the surface. Section
3 discusses the terrain slope estimation procedure. The
results of terrain slope estimation through simulation and
outdoor experiments are discussed in Section 4 and Section
5, respectively. Finally, the conclusion and future works are
described in Section 6.

Figure 3. Energy balance model of a ground surface

2. ENERGY MODEL
This paper uses the POST thermal model described in [8]. In
this model, the energy balance equation of a surface can be
written as

Sw↓+Lw↓−Lw↑s−Srefl
w↑ −Lrefl

w↑ −H−λE−G = 0 (1)

The definition of the symbols are given as follows.

Energy inputs:

• Direct solar radiation Sw↓
• Atmospheric radiation Lw↓

Energy outputs:

• Emitted long-wave radiation from the surface Lw↑s

• Reflected solar radiation from the surface Srefl
w↑

• Reflected atmospheric radiation Lrefl
w↑

• Sensible heat flux H
• Flux of moisture λE
• Ground flux G

The graphical representation of the energy balance is shown
in Figure 3.

As shown in Figure 4, the solar radiation depends on the
surface normal and solar direction. The solar radiation is
given by

Sw↓ = S cos θ (2)

where S and θ denote the Direct Normal Irradiance (DNI)
and the solar incidence angle, respectively. The DNI is the
amount of solar radiation that depends on the time and the
location but is independent from the surface geometry. The
surface reflectance of the solar radiation is then expressed
using a surface albedo A.

Srefl
w↑ = ASw↓ (3)

Some of energy emission terms depend on the terrain temper-
ature T : the long-wave radiation

Lw↑s = ϵσT 4 (4)
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Figure 4. Direct solar radiation in flat surface and slope

where ϵ and σ denote the emissivity of a surface and the
Stefan-Boltzmann constant, respectively; and the heat flux

H = CpρCHU(T − Ta) (5)

where Cp, ρ, CHU , and Ta denote the specific heat capacity
of air at constant pressure, the density of air, an exchange
coefficient of heat flux, and an air temperature, respectively.

In order to estimate the geometry from the energy balance
equation in (1), the following assumptions are made:

• The surface characteristics are locally uniform.
• The terrain parameters are preliminary identified.
• The following terms are independent of surface ge-

ometry: the atmospheric radiation Lw↓, the reflection
atmospheric radiation Lrefl

w↑ , the flux of moisture λE,
and the ground flux G.

Under these assumptions, the relative solar radiation to a
reference slope can be obtained from the above definitions.
The subtraction of (1) for target and reference terrain gives

Sw↓ − Ŝw↓ = α(T 4 − T̂ 4) + β(T − T̂ ) (6)

with terrain-dependent constants α = ϵσ/(1 − A) and β =
CpρCHU/(1 − A). Note that the subtraction eliminates all
unknowns from the energy balance equation. As a result, the
solar radiation difference can be estimated from the target
and reference temperatures T and T̂ . For simplicity, a flat
horizontal plane is used as the reference terrain in the rest of
this paper.

3. SLOPE ESTIMATION PROCEDURE
Slope angles are determined by the following 4 steps.

Step 1. Measure surface temperatures at a reference flat
terrain and at a target slope.

Step 2. Estimate the difference of solar radiation between
the two terrains using surface temperatures and the en-
ergy balance equation.

Step 3. Extract the candidates for slope normals by com-
paring the estimated radiation difference to the celestial
simulation.

Step 4. Continue from step 1 at varying time until the most
likely candidate is found.

Estimate the difference of solar radiation from temperatures
(Step 1 and 2)

Target and reference surface temperatures are remotely mea-
sured using an infrared camera. A reference point (flat ter-
rain) is chosen from past remote or proximity measurements.

Figure 5. Solar radiation difference against reference
terrain at noon at a location in the northern hemisphere.

Figure 6. Solar radiation contour overlaid on radiation
table. Points along the contour represent the possible

candidates of slope angles.

By applying the differential energy balance equation in (6)
to the measured temperatures, the relative solar radiation is
obtained as a numeric value.

Extract all possible surface normals (Step 3)

All candidates for slope normals are extracted by comparing
the estimated radiation difference to the celestial simulation
at the same time and location. For the sake of computational
efficiency, the difference of solar radiation is precomputed
and stored in data tables. The table generation process is
summarized as follows.

1) Compute the sunlight vectors at the location for differ-
ent time based on a celestial simulation.

2) Determine the solar incidence angles for all considered
surface normals by computing the vector inner product.

3) Compute the direct solar radiation using (2).
4) Store the subtraction of target and reference solar radi-

ation in data tables.

An example of visualized solar radiation table is shown in
Figure 5. The direction of the slope is defined as the azimuth
of surface normal. In this paper, the northward direction
is defined as 0 [deg] (360 [deg]), and the angle increase
clockwise. All the points along the contour line of the
estimated radiation difference are marked as candidates, as
shown in Figure 6.
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Figure 7. Solar radiation contours at 0:00 pm, 0:30 pm, and
1:00 pm. The intersection represents the true value

(direction=180 [deg] and tilt=10 [deg]).

Figure 8. The result of scoring in Figure 7. The point with
the maximum score is the intersection.

Select most-likely candidate from multiple measurement (Step
4)

Finally, the most-likely slope normal is selected based on
scoring from multiple measurement. The underlying fact is
that the sun position changes every minute, while a slope
tilt angle and direction at the point is static. The slope
normal is estimated by determining the intersection of ra-
diation contours at varying times. Figure 7 exemplifies the
intersection of radiation contours. Three curves correspond
to the radiation contours at 0:00 pm, 0:30 pm, and 1:00 pm.
The intersection is found by scoring. All candidates get score
1 at each measurement. This process is repeated several times
at varying times, then the intersection earns the highest score
over a given threshold as shown in Figure 8.

4. SIMULATION STUDY
A simulation study is conducted to validate our method. The
date and the location are set to August 30, 2017 and a point
in Earth’s northern hemisphere (latitude: 35.558675 [deg],
longitude: 139.395232 [deg], altitude: 9.0 [m]), which is the
same conditions as the following outdoor experiment. In the
simulation, surface temperatures are synthesized based on the
simplified energy balance equation

(1−A)Sw↓ + ϵLw↓ − ϵσT 4 −CpρCHU(T − Ta) = 0 (7)

Table 1. Simulation parameters. JMA represents the dataset
from Japan Meteorological Agency.

Name Symbol Value
Surface albedo A 0.20
Surface emissivity ϵ 0.90
Heat capacity Cp 1.00 [kJ/(kg ·K)]
Air density ρ 1.21 [kg/m3]
Heat exchange coefficient CHU 0.015 [m/s]
Air temperature Ta JMA
Atmospheric radiation Lw↓ JMA
Direct normal irradiance S JMA

that incorporates the following approximations

• Moisture on surface does not evaporate (i.e., λE = 0).
• Heat is not transmitted to the underground (i.e., G = 0).

A dataset from Japan Meteorological Agency (JMA) [9]
is used for the DNI S, atmospheric radiation Lw↓ and air
temperature Ta. The parameters used in the simulation are
summarized in Table 1.

Data points are generated for tilt angles from 0 to 30 [deg]
in 0.5 [deg] steps and directions from 0 to 360 [deg] in 1.0
[deg] steps. In other words, there are 61 × 361 patterns of
surface geometry. The slope angle estimation is evaluated by
the Mean Absolute Error (MAE)

MAE =
1

n

n∑
i=1

|yi − xi | (8)

and the Standard Deviation (SD) of the absolute error

SD =
1

n

√√√√ n∑
i=1

(|yi − xi | −MAE)2 (9)

where x and y denote actual and estimated slope angles and
n denotes the number of estimated slope angles.

Slope estimation results

The proposed method was analyzed statistically for all slope
patterns in different time of a day. For each slope pattern,
temperatures were measured for 20 minutes at 1-minute inter-
vals. Figure 9 represents the cumulative probability of angle
estimation error at each time. The cumulative probability
represents the ratio of patterns that can be estimated within
an absolute error. For example, 90% of observations has
error below 0.43, 0.62, 0.9 [deg] on 9:00 am, 0:00 pm,
3:00 pm, respectively. It can be seen that the proposed
estimation method can reliably identify slope angles with a
certain accuracy based on temperature measurements.

Direction dependency analysis

The solar incidence angle is important to the proposed al-
gorithm since it directly affects the amount of direct solar
radiation. The expected estimation accuracy will change
depending on the direction of slope, even at the same mo-
ment. Direction dependency was analyzed in Figure 10,
which shows the MAE of slope angles for every 30 [deg] at
different sunlight conditions. Overall, the absolute error at
the south is larger than the one at other directions. One of
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Figure 9. Cumulative probability of absolute error in slope
estimation

Table 2. Solar incidence angles in degrees on August 30
and December 11

Local Date Tilt angle Local Time (pm)
(2017) [deg] 0:00 1:00 2:00 3:00

0 (Flat) 26.9 31.9 41.0 52.1
August 30 10 (Slope) 17.1 24.7 36.5 49.5

20 (Slope) 7.8 19.9 34.1 48.5
0 (Flat) 58.8 61.9 67.8 75.9

December 11 5 (Slope) 53.9 57.3 63.8 72.6
15 (Slope) 44.0 48.2 56.0 66.2
25 (Slope) 34.1 39.4 48.7 60.2

the reasons is that the gradient of solar radiation is smaller
at the south, where the solar incidence angles get close
to 0. According to (2), the radiation difference is minor
for small incidence angles. Therefore, the slight difference
of temperature measurement will significantly affect slope
estimation.

5. EXPERIMENTS
The proposed method was also validated in a controlled
outdoor environment on August 30 and December 11, 2017.
Figure 11 shows the experimental setup. Silica sand layers
were formed on slanted surfaces of 0, 10 and 20 [deg] on
August 30 and 0, 5, 15 and 25 [deg] on December 11. The
thermal insulating sheet was placed under the layers to avoid
heat transmission to the ground. The location is the same as
the previous simulation. The direction of slopes is 180 [deg]
(south-facing slope). The solar incidence angles under these
conditions can be computed as shown in Table 2.

The sand layers were continuously exposed to the sunlight
from 0:00 pm to 3:00 pm. The surface temperatures were
measured every minute with an infrared camera and a ther-
mometer. The DNI is estimated at each time by applying the
following model from [10] to the flat plane measurement

Sw↓ = l/(4.57× 54) (10)

where l denotes illuminance measured by an illuminometer.

(a) 9:00 am

(b) 0:00 pm

(c) 3:00 pm

Figure 10. Direction sensitivity in estimation accuracy
[deg]
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Figure 11. Experimental setup taken on August 30

Table 3. Experimental parameters. JMA represents the
dataset from Japan Meteorological Agency.

Name Symbol Value
Surface albedo A 0.20
Surface emissivity ϵ 0.90
Heat capacity Cp 1.00 [kJ/(kg ·K)]
Air density ρ 1.21 [kg/m3]
Heat exchange coefficient CHU 0.015 [m/s]
Air temperature Ta JMA
Atmospheric radiation Lw↓ JMA

Model verification

As a preliminary experiment, actual temperature measure-
ments and model-based estimations were compared in order
to verify the validity of the energy balance equation and the
experimental assumption. Table 3 summarizes the model
parameters used for the verification. A comparison of model
and measured temperatures is shown in Figure 12. It is
seen that the temperature estimation from the energy model
fits the measurements from the external sensor. The root
mean square error of temperature was 1.83 [◦C]. This error
is similar to that of [8], therefore this result indicates that
the adopted model and assumptions are appropriate for this
experimental setup.

Figure 12. Comparison between measured and estimated
surface temperatures (red:August 30, blue:December 11)

Figure 13. Absolute angle error in outdoor experiment
(error bar is SD of absolute error). Tilt angle 10 and 20 [deg]

are on August 30, Tilt angle 5, 15 and 25 [deg] are on
December 11.

Slope estimation results

Slope angles were estimated based on temperature measure-
ments from a target slope (5, 10, 15, 20, 25 [deg]) and a
reference plane (0 [deg]). The slope estimation results are
shown in Figure 13. Most of the errors are around 2–7
[deg] until a sudden drop in accuracy to >10 [deg] around
14:30 pm. This performance degradation can be explained
by the change in weather conditions: increased clouds at the
time reduced the radiation that reaches the ground.

Discussions

The proposed method could successfully estimate slope an-
gles solely from temperature measurements. The obtained
accuracy is sufficient to detect untraversable steep slopes.
However, there might be applications that requires higher
accuracy such as kinematics-based traversablity analysis. Be-
low are discussions regarding accuracy improvement.

Weather dependency The ground surface temperature
could be unexpectedly affected by changes in weather
conditions. Cloudiness is an example seen in the ex-
periment. The surface temperature change introduces
the inconsistency with the precomputed solar radiation
data, thereby increasing the error in slope angle estima-
tion. The impact of weather changes can be mitigated
by monitoring sudden changes in ground temperature.
Also, it should be noted that this effect is minor in plan-
ets such as Mars where the weather conditions rarely
change.

Model improvement A simplified energy model is used
in the algorithm for the sake of computational efficiency.
As a side effect, a few energy terms are neglected which
may reduce the model fidelity. A detailed examination
of thermal models could improve the accuracy.

Parameters identification There is uncertainty in param-
eter identification which significantly affects the slope
estimation. An accurate parameter identification method
is important to achieve high accuracy. An interesting
approach would be a machine learning-based parameter
identification, which updates the parameters based on
the existing measurements.
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Figure 14. An example of failure in estimation due to the
fact that the contours have no intersection point

Measurement noise There are some cases where the
slope angle cannot be estimated since the contours have
no intersection point, as illustrated in Figure 14. Among
the possible causes, the measurement noise in temper-
ature is considered significant. This failure can also
happen because of the unexpected change of surface
temperature due to weather conditions. One approach
to handle this noise is to adopt a robust scoring method
in the surface normal selection process. In practice, it is
straightforward to detect this types of failure and invoke
recovery actions.

6. SUMMARY
This paper has presented a slope estimation method using a
monocular infrared camera with an application to planetary
exploration rovers. A differential energy model is developed
to correlate the geometry of distant terrain to thermal proper-
ties in target and reference terrains. A set of possible slope
parameters is obtained from remote temperature measure-
ments using our differential model. A scoring-based method
from continuous observations enables the reliable estimation
of slope parameters at any solar and slope direction.

The proposed method was validated by simulations and out-
door experiments. In the simulation, the average error was
nominally less than 1 [deg] during the daytime. In the outdoor
experiments, most of the errors were around 2-7 [deg] in
nominal conditions, its accuracy being sensitive to global
environmental changes. Despite unavoidable ambiguity in
measurements and parameter identification, the proposed
method accurately recovers the slope angles.

The approach described in this paper can be improved from
several aspects. Firstly, high-fidelity energy model could be
used. This requires the accurate identification terrain and
aerial parameters. The high-fidelity model would be useful
for the assessment of more complex terrain. Secondly, the
surface geometry selection process can be made more robust
to noise by using robust scoring techniques. Further inves-
tigation on the selection process may relax the constraints
on the number of required measurements, allowing a slope
estimation with fewer data points.

REFERENCES
[1] S. B. Goldberg, M. W. Maimone, and L. Matthies,

“Stereo vision and rover navigation software for plan-
etary exploration,” IEEE Aerospace Conference, vol. 5,
pp. 2025–2036, 2002.

[2] K. Schauwecker, R. Klette, and A. Zell, “A new feature
detector and stereo matching method for accurate high-
performance sparse stereo matching,” IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pp.
5171–5176, 2012.

[3] Z. F. Wang and Z. G. Zheng, “A region-based stereo
matching algorithm using cooperative optimization,”
IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–8, 2008.

[4] H. Hirschmuller and D. Scharstein, “Evaluation of Stereo
Matching Costs on Images with Radiometric Differ-
ences,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 31, no. 9, pp. 1582–1599, 2009.

[5] G. Ishigami, M. Otsuki, and T. Kubota, “Path planning
and navigation framework for a planetary exploration
rover using a laser range finder,” Field and Service
Robotics, vol. 92, pp. 431–447, 2014.

[6] R. Zhang, P. S. Tsai, J. E. Cryer, and M. Shah, “Shape-
from-Shading: a survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 8, pp.
690–706, 1999.

[7] M. K. Johnson and E. H. Adelson, “Shape estimation
in natural illumination,” IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2553–2560, 2011.

[8] Martin J. Best, “A model to predict surface tempera-
tures,” Boundary-Layer Meteorology, vol. 88, no. 2, pp.
279–306, 1998.

[9] The Japan Meteorological Agency Web site: http://
www.jma.go.jp/jma/indexe.html [Accessed at
16th October 2017].

[10] R. W. Thimijan and R. D. Heins, “Photometric, radio-
metric, and quantum light units of measure: a review of
procedures for interconversion,” HortScience, vol. 18, no.
6, pp. 818–822, 1983.

BIOGRAPHY[

Satoshi Watanabe received the B.S.
degree from the Department of Preci-
sion Mechanics, Chuo University, Tokyo,
Japan, in 2016. He is currently pursu-
ing the master’s degree with the Gradu-
ate School of Science and Engineering,
Chuo University. His main research
interest is environment recognition for
planetary exploration rovers. He is a
member of the Japan Society of Mechan-

ical Engineers.

7



Kyohei Otsu received his Bachelor’s,
Master’s., and Ph.D. degrees in Electri-
cal Engineering from the University of
Tokyo in 2011, 2013, and 2016, respec-
tively. In 2016, he joined Jet Propulsion
Laboratory as a Robotics Technologist
in the Mobility and Robotic Systems Sec-
tion. His technical expertise includes
visual perception, localization, motion
planning, and autonomous learning.

Masatsugu Otsuki was born in Japan in
1977. He received his Bachelor’s, Mas-
ter’s, and Doctorate degrees from Keio
University in 2000, 2001, and 2005,
respectively. From 2002 to 2005, he
worked as an Assistant Professor at the
Department of System Design Engineer-
ing, Keio University. He is currently
working as an Assistant Professor at
the Department of Spacecraft Engineer-

ing in Institute of Space and Astronautical Science, Japan
Aerospace Exploration Agency. He is a member of the JSME
and RSJ. His current research interests include mobility and
dynamics of a spacecraft and a planetary rover.

Takashi Kubota is a professor at Insti-
tute of Space and Astronautical Science
(ISAS), Japan Aerospace Exploration
Agency (JAXA), Japan. He received Dr.
degree in electrical engineering in 1991
from the University of Tokyo. He is also
a professor of the graduate school of the
University of Tokyo. He was a visiting
scientist in Jet Propulsion Laboratory
in 1997 and 1998. He engaged in the

guidance, navigation, and control in HAYABUSA mission.
His research interests include Robotics and AI in space,
especially Autonomous Rover and Image based Navigation
etc.

Gakuto Masuyama received a B.S. de-
gree in Engineering from Nagoya Uni-
versity, Japan, in 2005; he also earned
M.S. and Ph.D. degrees in Engineering
from the University of Tokyo, Japan,
in 2007 and 2013, respectively. Since
2013, he has been an Assistant Professor
at Chuo University, then moved to Meijo
University as an Associate Professor in
2017. His research interests include

perceptual information processing and intelligent robotics.
He is a member of the IEEE and RSJ.

Kazunori Umeda received B.Eng.,
M.Eng., and Ph.D. degrees in precision
machinery engineering from the Univer-
sity of Tokyo, Japan, in 1989, 1991 and
1994 respectively. He became a Lecturer
of Precision Mechanics at Chuo Univer-
sity, Japan in 1994, and is currently a
Professor since 2006. He was a visiting
worker at National Research Council of
Canada from 2003 to 2004. His research

interests include robot vision, 3D vision, and human interface
using vision.

8


