
Apprenticeship Learning Based on Inconsistent Demonstrations

Gakuto Masuyama1 and Kazunori Umeda1

Abstract— Apprenticeship learning based on inconsistent
demonstrations is presented in this paper. We address a problem
where given demonstrations are not directly applicable to
reward function estimation due to the non-stationarity of an
environment or the difference between the dynamics of a robot
and a demonstrator. A basic idea of the proposed method is
to use a subset of the trajectories sampled from the baseline
policy as training data for inverse reinforcement learning. All
consistent sample trajectories and inconsistent demonstrations
are abstracted by an affine transformation invariant feature.
Using the feature, the importance of each sample trajectory
is estimated. Rating the sample trajectories based on impor-
tance, the training data for inverse reinforcement learning are
identified. The validity of our approach is verified through
simulation in two scenarios: inconsistency caused by variation
of an environment and performance of a robot.

I. INTRODUCTION
Reinforcement Learning (RL) [1] is a promising approach

to developing an autonomous and adaptive robot control
system. In the RL framework, a robot is forced to interact
with an environment by trial and error, and the robot receives
a reward signal as a result of each decision. The robot learns
the optimal control policy for a given problem by maximizing
expectation of the accumulated reward signal. Large studies
have demonstrated the effectiveness of RL for the robot
control problem [2], [3], [4].

As is the nature of autonomous learning through explo-
ration, performance of the RL algorithms is vitally dependent
on the reward function. However, designing the reward
function is prone to be time consuming for system designers,
especially in cases where the problem involves complex
tasks and dynamics from the environment. To address that
problem, Inverse Reinforcement Learning (IRL) and Appren-
ticeship Learning (AL) have been developed [5], [6], [7]. IRL
is a framework for estimating the underlying reward function
given an expert’s demonstrations, and AL recovers policy via
the procedures of IRL and RL.

Most IRL and AL algorithms assume that the experts
and a robot make their decisions in the same Markov
Decision Process (MDP). However, when the assumption
cannot hold, demonstrations observed from the expert might
be inconsistent for the robot to solve the given problem. In
this paper, an AL algorithm is proposed to enable the agent
1 to obtain a suitable reward function and policy in current

1Authors are with the Department of Precision Mechanics, Fac-
ulty of Science and Engineering, Chuo University, 1-13-27 Kasuga,
Bunkyo-ku, Tokyo 113-8551, Japan. {masuyama, umeda} at
mech.chuo-u.ac.jp

1Although our eventual purpose is to create a control policy for a robot,
the range of the application of the proposed method is not necessarily limited
to the robotic control problem. Therefore, we refer to agents rather than to
robots, hereafter, unless context requires.

Fig. 1: Basic idea of proposed AL. Trajectories demonstrated
in Expert MDP are inconsistent with Agent MDP. Measuring
similarity between the demonstrated and sampled trajecto-
ries, the agent identifies some of the sampled trajectories as
training data for IRL.

MDP from potentially inconsistent demonstrations. Here we
consider inconsistencies in the sense that the demonstrations
are helpful but intractable for the agent’s estimation of
its reward function in a direct IRL approach 2. Note that
inconsistency is a rather different problem than imperfect or
poor demonstration, which has been discussed in IRL/AL
literature in that the MDP itself is shared by the expert and
the agent.

We call supposed MDP by an expert and an agent as
Expert MDP and Agent MDP, respectively. The basic idea
of our AL is quite simple as is shown in Fig. 1. Direct AL
procedure using inconsistent demonstration might lead the
agent to unsuitable policy because the policy of the expert
could be infeasible in Agent MDP. On the other hand, it is
at least guaranteed that trajectories sampled by an arbitrary
baseline policy of the agent are feasible. Therefore, we use a
subset of the sample trajectories as demonstrations in Agent
MDP. In this paper, when we refer to a sample trajectory, we
are indicating a trajectory potentially acceptable as a demon-
stration in Agent MDP. Demonstrations of the expert are uti-
lized to identify a suitable sample trajectory. The similarities
between the sample trajectories and the demonstrations are
measured by an abstracted time series feature. Then a subset
of the sample trajectories is accepted as training data for IRL
based on the importance estimation technique. Simulation
experiments demonstrate that the proposed method enables
the agent to obtain better policy than that obtained by a direct
AL procedure.

2Inconsistencies in demonstrations are supposed to be caused by varia-
tions of an environment after observation and differences in dynamics, for
instance.

II. PRELIMINARIES

In RL problems, it is often assumed that the prob-
lem satisfies the MDP, which is represented by a tuple
(S,A, T,R, d0, γ), where S is a set of states; A is a set
of actions; T (s, a, s′) = Pr(st+1 = s′ | st = s, at = a) is
a transition probability from a state s ∈ S to a next state
s′ ∈ S under action a; R is the reward function; d0 is an
initial state distribution; and γ ∈ [0, 1) is a discount rate. A
stochastic policy π(s, a) : S×A → [0, 1] gives a probability
of selecting action a in state s. The objective of RL is to
obtain optimal policy π∗, which maximizes expected return
E[

∑∞
t=0 γ

tR(st, at) | d0, π, T], i.e., value function V π(s).
IRL is different from RL in that the underlying reward

function for a given task is not provided. Therefore, the
MDP without reward function MDP\R is assumed. The
reward function is assumed to be represented as R(s, a) =∑k

i=1 θifi(s, a), where fi and θi are the ith element of
feature vector f ∈ Rk and parameter vector θ ∈ Rk, respec-
tively. The expected feature (count) under policy π is denoted
by fπ

i = E[
∑∞

t=0 γ
tfi(st, at) | d0, π, T]. This notation

simplifies the value function V π(s) =
∑k

i=1 θif
π
i (s, a).

III. SIMILARITY MEASURE OF TRAJECTORIES

IRL algorithms often match the feature count for the policy
of an expert and that of an agent. In [8], a reward function
is estimated under a constraint:

|
∑
τ∈T

Pr(τ)fτ
i − f̂i| ≤ ϵi, (1)

where fτ
i is a discounted feature count along a trajectory

τ = {(s0, a0), · · · , (sn, an)}, f̂i is an empirical expectation
of feature observed from demonstrated trajectories, T is a
set of possible trajectories, and ϵi is a threshold. Such a
constraint indicates that the estimated reward function makes
the agent mimic the behavior of the expert as exactly as
possible. However, direct imitation might not be feasible
for the agent if the demonstrations are inconsistent with the
current situation of the agent. The constraint of matching
features in (1) might not work out when we must surmise
the inconsistency.

This paper addresses the problem by selecting training
data from sample trajectories, which are obtained by the
agent’s exploration. Although the sample trajectories should
be consistent with the Agent MDP, obviously, most of
sample trajectories would not be relevant as training data for
reward function estimation if we cannot suppose potent prior
information 3. Demonstrations are then used as a reference
for selecting relevant data for the Agent MDP from the
consistent sample trajectories. Demonstrations by an expert is
inconsistent with an Agent MDP, but it can be supposed to be
(nearly) optimal in an Expert MDP. Hence, demonstrations
can be a key to measuring the relevance of the sampled

3The sample trajectories are obtained in the Agent MDP whereas
demonstrations are obtained in the Expert MDP. The sample trajectories
are feasible for the agent because they are sampled by the agent itself.
However, there is no guarantee that the sample trajectories are relevant to
the appropriate reward function for a given problem.

(a) A given demonstration

(b) A sample trajectory of a robot:
spatially near the demonstration

(c) A sample trajectory of a robot:
geometrically near the demonstration

Fig. 2: A conceptual example of the distance measure
between a demonstration and sample trajectories. (a) A
demonstrated trajectory. (b) A sample trajectory spatially
near the demonstration. The relevance of the sample tra-
jectory can be evaluated using common distance measure.
(c) The robot is prohibited from entering the upper corridor,
but no demonstrations are observed in the lower corridor.
The demonstration can be available in the lower corridor
if the distance measure permits the agent to rotate the
demonstration.

trajectories. Each sample trajectory is evaluated as to its
relevance to the problem based on “similarity” between
demonstrations and sample trajectories. The feasibility of the
above scheme then depends on the evaluation measure of the
similarity between the obtained trajectories and demonstra-
tions.

One simple approach is to use a spatial distance such as the
Euclidean distance between demonstrations and the sample
trajectories. If there is a sample trajectory showing a small
distance to one of the demonstrations, then the trajectory
possibly has high relevance and consistency with the Agent
MDP. This would be the case if the Agent MDP and the

Expert MDP have roughly the same properties. A conceptual
example is illustrated in Fig. 2. The trajectory of a human
from an entrance to an exit is demonstrated (blue line in
Fig. 2a). In Fig. 2b, an orange-colored trajectory represents
a relevant sample trajectory of a mobile robot. The mobile
robot requires wider turns than does the human demonstrator
due to its nonholonomic constraints and requirements for
safety. However, it seems that feasible and reasonable sample
trajectories possibly exist spatially near the demonstration.
Therefore, it would be plausible to evaluate the sample
trajectories based on common distance measure from the
demonstrations. On the other hand, in Fig. 2c, the robot
is prohibited from going into the upper corridor; however,
no demonstrations are observed in the lower corridor. In
this case, the demonstration is inconsistent with the Agent
MDP; however, it still can have a certain relevance. Rotating
the demonstration by 180 degrees (dotted line) does not
cause it to lose consistency and relevance. A relevant sample
trajectory in Fig. 2c resembles the rotated demonstrations;
hence, a rotation invariant measure (generalization) would
be helpful in the situation.

Fig. 2 is just an example, but there are similar situations in
robotic control problems. Therefore, such a generalization,
including but not limited to rotations, is important for finding
consistent and relevant trajectories. In this paper, Affine
Invariant Feature (AIF) [9] is introduced as an abstracted
feature of a trajectory.

Let ξ ∈ Rd be a feature vector (e.g., position and velocity
of a robot), and let Ξτ

0:n = [ξτ0 , · · · , ξτt , · · · , ξτn] be a time
series of ξ along trajectory τ . For any affine transformation
for ξt

ξ̄t = Aξt + c, (2)

AIF M for Ξτ
0:n satisfies M(Ξτ

0:n) = M(Ξ̄τ
0:n), where

Ξ̄τ
0:n = [ξ̄τ0 , · · · , ξ̄τt , · · · , ξ̄τn]. An actual functional form of

M is

M(Ξτ
0:n) =

√
(µτa − µτb)

T (Στa +Στb)
−1(µτa − µτb),

(3)
where µτa and Στa are the mean and covariance matrix of
Ξτa , respectively. Ξτa := Ξτ

0:ts is an arbitrary subsequence
of Ξτ

0:n, then

µτa =
1

ts + 1

ts∑
t=0

ξt, (4)

Στa =
1

ts + 1

ts∑
t=0

(ξt − µτa)(ξt − µτa)
T . (5)

µτb and Στb are defined for subsequence Ξτb := Ξτ
ts+1:n in

the same manner as with τa.
AIF was originally developed as a speaker invariant feature

in speech recognition research. It is well known that differ-
ences in vocal tract length and recording equipment can be
approximately modeled by affine transformation for cepstral
vectors. Thus, affine transformation invariant features offer a
measure of inherent structure in particular speech languages
without the normalization of massive data. In the context of
this paper, we assume that AIF can be an invariant feature

Fig. 3: Densities of the AIF obtained from the policy of the
expert and the baseline policy of the agent. The blue- and
orange-colored plots represent the probability density of M
under the expert policy in the Expert MDP and the baseline
policy in the Agent MDP, respectively. τi and τj are sample
trajectories. The AIF of τi is frequently observed in the agent
but rarely observed in the expert. The AIF of τj is frequently
observed in the expert and rarely observed in the agent.

of trajectory, which enables generalization of the trajectory
without losing consistency for the MDP. AIF represents the
geometric structure of an arbitrary trajectory. Hence, AIF
can be seen as an abstracted feature of time series derived
from observation ruled by each decision of the expert/agent.
Robot control problems are (implicitly) constrained by the
dynamics, external environments, and tasks, as is the case
with the demonstrator. Therefore, a subset of sample trajec-
tories might possibly have AIFs similar to that of trajectories
relevant to a given task 4.

IV. PICKING OUT SAMPLE TRAJECTORIES VIA
IMPORTANCE ESTIMATION

AIF is introduced in the previous section to measure the
similarity of trajectories. Using AIFs of every demonstration
and sample trajectory, training data for IRL is selected from
a set of sample trajectories. A naive approach is likely to
accept a sample trajectory with an AIF close to that of the
demonstrations. Any sample trajectory can then be accepted
if there exists at least one demonstration showing a similar
AIF. However, each demonstration should not have the same
importance in implementing a task of the expert. It is
natural to suppose that a frequently observed demonstration
is essential to implementing the given task. Besides, it is
not realistic to assume that the observation and policy of the
expert are perfect and deterministic.

Importance is a criterion for deciding which sample trajec-
tory should be accepted as training data for IRL. Fig. 3 gives
the perspective of importance. The density of demonstrations

4When given tasks are complicated, using AIFs might not be justified.
Complicated tasks would require complex trajectories for experts and robots.
In such cases, affine transformation invariance would be an abstraction too
powerful. Therefore, in this paper, we focus on relatively simple tasks that
can be solved with a few chains of motor primitives (skills).

with respect to the AIF (PE) is right-sided, as compared with
the density of the sample trajectories (PA) in the figure. A
sample trajectory τi has its AIF M(τi) near the peak of
PA; it is at the skirt of PE at the same time. On the other
hand, the AIF of τj is near the peak of PE , and PA has a
relatively small value at M(τj). Sample trajectory τj should
have higher importance than τi because τj has the feature
similar to the fundamental trajectories of the expert. Contrary
to τj , τi has lower importance, although it is often observed
by the agent.

In general, it should be natural to assume that a baseline
policy is not particularly informative about the true optimal
policy in the Agent MDP. Therefore, most of the sample
trajectory would be irrelevant for IRL, and they would take
the AIF into neighborhood of the peak of PA. On the other
hand, in the Expert MDP, trajectories in the neighborhood of
the peak of PE are frequently observed, even if the expert
demonstrates iteratively in different initial conditions. Such
a set of trajectories must be fundamental for implementing a
given task for the expert, as for the agent when the trajecto-
ries are abstracted using AIFs. The assumption “frequently
observed trajectories in the sense of AIFs are important” is
analogic with feature matching in the IRL/AL framework.

Along with above discussion, the importance of each
sample trajectory τi is defined as

w(M(τi)) :=
PE(M(τi))

PA(M(τi))
, (6)

where w(M(τi)) is an importance of τi. The density of AIFs
with respect to demonstrations and sample trajectories are
denoted by PE(M) and PA(M), respectively. Let us suppose
that the agent is given nE demonstrations {τEi }nE

i=1 and nA

sample trajectories {τAi }nA
i=1. If densities PE and PA are

specified, the importance w can be estimated. However, it
is rather difficult to estimate density probability in general.
Therefore, we introduce the Kullback-Leibler Importance
Estimation Procedure (KLIEP) [10] to directly estimate the
importance.

KLIEP estimates w instead of estimating each density.
Using KLIEP, KL divergence from demonstration density
PE to its estimate P̂E(M) = ŵ(M)PA(M) is minimized,
where ŵ denotes the importance estimate:

KL(PE(M)||P̂E(M)) =

∫
M

PE(M) log
PE(M)

ŵ(M)PA(M)
dM.

(7)
M is a set of AIFs. The importance estimate ŵ is represented
by a linear combination of a kernel function. In this paper,
the Gaussian distribution has been chosen as the kernel.

Some of the sample trajectories are labeled as training
data for IRL based on their estimated importance. Then
the reward function is estimated using the IRL algorithm;
finally, the policy is obtained by implementing RL under
the estimated reward function. The entire procedure of the
proposed method is shown in Fig. 4. Relative Entropy Inverse
Reinforcement Learning (REIRL) has been chosen as the
IRL algorithm. REIRL is suited for our method because it is

Fig. 4: Schematic procedure of the proposed method. The
agent first samples trajectories using an arbitrary baseline
policy. AIFs are calculated for each trajectory. The impor-
tance of each AIF is then estimated by KLIEP. Training
data is picked out from the sample trajectories based on
their importance. The reward function is estimated using the
selected training data; finally, the agent learns the policy for
the estimated reward function.

Fig. 5: The mountain car problem. The task is to find
policy that enables the car to climb the hill and reach the
goal position. The car’s motor is underpowered to reach
the destination if it keeps accelerating to the right side.
Therefore, the car must ascend to a certain height of the left
hill to utilize gravity. For more details about the mountain
car problem, see [11].

trajectory based, model free, and does not require recursive
computation of policy during reward estimation.

V. SIMULATION

Simulation experiments were conducted to verify the
validity of the procedure proposed in Fig. 4. We tested
the performance via the mountain car problem (Fig. 5)
in two different scenarios. One environmental difference
pertains to where the car attempts to climb the hill. The
other pertains to the difference in the maximum power
of the car. We compared the proposed method with naive
REIRL, i.e., REIRL using demonstrations, to estimate the
reward function. For each condition below, simulations were
implemented 30 times.

TABLE I: Policy losses and success rates at different decay
rates. The mean and standard deviation are shown.

PL (mean) PL (sd) SR

Proposed 38.2 21.1 0.57

REIRL 44.3 21.9 0.43

The proposed method and REIRL were evaluated based
on Policy Loss (PL) L(R, π) = ∥V ∗(R) − V π(R)∥ [12]
and the Success Rate (SR) of accomplishing task in the
Agent MDP, where V ∗(R) denotes the vectorized optimal
value function in the Agent MDP, and V π(R) denotes the
vectorized value function under estimated policy π. We wish
to obtain V ∗(R) and its optimal policy; therefore, the small
PL is desirable. We applied value iteration [11] in forward
RL step. Note that we assume that the expert does not know
V ∗(R). The assumption is remarkably different from general
IRL and AL settings. SR was obtained in the Agent MDP
using the optimal policy for each estimated reward function,
while the initial state was chosen in the range [−1, 0] and
[−0.02,−0.02] of position and velocity. For each policy, the
averaged success rate was obtained from 30 trials.

The true reward function gave +1 if the position was 0.55
and 0 otherwise. Two variables, the position and velocity
of the car, were discretized into 200 grids. Therefore, the
number of total possible states is 40000. Each element of
feature vector f ∈ {0, 1}40000 takes 1 iff the car is in
a state that corresponds to the element. An initial state
of each trajectory was chosen from a uniform distribution.
The number of demonstrations was 30, and that of sample
trajectories was 100. The sample trajectories were ranked by
their estimated importance, and the top 30 trajectories were
used as training data of the proposed method. The length
of each demonstration and sample trajectory was 60 steps.
We determined ts = 30 as a natural choice for segmenting
60-step trajectories into two distributions. The discount rate
was 0.99. There were three available actions: acceleration to
the left, acceleration to the right, and coasting.

A. Difference in the Decay Rate of Velocity

Different decay rates for the velocity of the car were set
in this experiment. In the Expert MDP, the decay rate for
velocity was 0.001 everywhere. On the other hand, the decay
rate was 0.01 in the Agent MDP if the position was equal to
or less than −0.5. The optimal value function in each MDP
is shown in Fig. 6. It shows that the difference in the decay
rate visibly distorts the optimal path in the state space, i.e.,
demonstrations were inconsistent with the Agent MDP.

Table I represents the PL and the SR of the proposed
method and REIRL. The proposed method improved both
the PL and the SR. As compared with the mean of the
PL, the standard deviation of the PL seems to result in
a relatively large value. This is due to the fact that, oc-
casionally, there were substantially wrong estimates of the
reward function. Such failures were caused by the uneven

(a) Optimal value function in Expert MDP

(b) Optimal value function in Agent MDP

Fig. 6: Optimal value function in (a) the Expert MDP and
(b) the Agent MDP. The horizontal axis represents velocity,
and vertical axis represents the position of the car. The color
bar represents the state value. The decay rate in the Agent
MDP was greater than that of the Expert MDP in positions
equal to or less than −0.5.

provision of demonstrations or sample trajectories. We did
not assume any prior information about the baseline policy;
hence, there were occasionally no sample trajectories arriving
at the goal state. The relationship between the baseline policy
and performance is discussed in V-C.

B. Difference in the Power of the Car

We tested the performance of the proposed method with
respect to the power of the car. Because the power of the car
is lowered, the car is required to climb the left hill higher
to take advantage of the force of gravity. As a result, the
number of back-and-forth movements of the car increases,
and the optimal policy in the Agent MDP differs remarkably
from that in the Expert MDP. The power of the car in the
Agent MDP was multiplied by coefficients 0.9, 0.8, 0.7,
and 0.6. Fig. 7 depicts optimal value functions in the Agent
MDP, where the coefficients for the power of the car are 0.8
and 0.6. When the coefficient equals 1.0, the optimal value
function is the same as that in Fig. 6a.

The PL and SR results are shown in Table II and Table III,
respectively. As compared with REIRL, the proposed method
reduced the performance decrement, which is associated
with the decrease in power. This tendency is particularly

(a) Coefficient for the power of the car: 0.8

(b) Coefficient for the power of the car: 0.6

Fig. 7: Optimal value function for coefficients (a) 0.8 and
(b) 0.6. The horizontal axis represents velocity, and the
vertical axis represents the position of the car. The color
bar represents the state value.

outstanding at coefficient 0.6, where it was almost impossible
for REIRL to provide appropriate policy for the agent. This
result indicates the contribution of the abstraction using AIFs
and importance-based selection of training data.

C. Discussion
It can be seen that certain improvement is attained by the

proposed method. However, it would be difficult to achieve
the same level of performance with the usual AL scenario,
at the present. We consider that the most fundamental issue
for further improvement is the baseline policy. In this paper,
the baseline policy is given by a uniform distribution. In
the mountain car problem, the car was affected by limited
power, the force of gravity, and velocity decay. These condi-
tions resulted in characteristic trajectories, even though the
baseline policy is completely random. Therefore, we could
find the characteristic trajectories using AIFs and obtained
relevant training data. However, there were also trials with
no relevant sample trajectories to estimate the goal-directed
reward function. The quality of the baseline policy would
directly affect performance, especially in high dimensional
problem spaces, where available samples are sparse.

VI. CONCLUSIONS
This paper addressed the problem of estimating the reward

function based on demonstrations that are potentially incon-

TABLE II: The policy loss for each coefficient. The top row
denotes the coefficients for the power of the car.

1.0 0.9 0.8 0.7 0.6

Proposed (mean) 28.1 29.7 40.5 35.7 25.9

Proposed (sd) 10.4 16.2 20.8 20.1 15.1

REIRL (mean) 30.6 29.4 43.9 44.6 31.9

REIRL (sd) 14.6 14.9 21.0 21.0 15.8

TABLE III: Success rate for each coefficient.

1.0 0.9 0.8 0.7 0.6

Proposed 0.90 0.83 0.52 0.47 0.53
REIRL 0.75 0.73 0.38 0.36 0.07

sistent with current MDP. We have presented the AL method,
which selects training data out of trajectories sampled from
arbitrary baseline policy. Using AIFs, each trajectory is
abstracted and compared with demonstrations. Then the
training data for IRL is selected based on importance estima-
tion procedures. Simulation experiments have demonstrated
that the proposed method can improve robustness to the
inconsistency between the expert and the agent.

We are considering integrating the proposed method with
skill-driven intrinsically motivated RL [13] and Nonparamet-
ric Bayesian IRL [14] to design appropriate baseline policy.

REFERENCES

[1] M. Wiering, M. van Otterlo, Reinforcement learning: State of the art,
Springer-Verlag, 2012.

[2] J. Peters, S. Schaal, Natural actor-critic, Journal of Neurocomputing,
vol.71, no.7, pp.1180-1190, 2008.

[3] E. Theodorou, J. Buchli, S. Schaal, A generalized path integral control
approach to reinforcement learning, Journal of Machine Learning
Research, vol.11, pp.3137-3181, 2010.

[4] J. Kober, J.A. Bagnell, J. Peters, Reinforcement learning in robotics: A
survey, The Int. Journal of Robotics Research, vol.32, no.11, pp.1238-
1274, 2013.

[5] A. Ng, S. Russell, Algorithms for inverse reinforcement learning, Proc.
of the 17th Int. Conf. on Machine Learning, pp.663-670, 2000.

[6] P. Abbeel, A. Ng, Apprenticeship learning via inverse reinforcement
learning, Proc. of the 21st ACM Int. Conf. on Machine Learning, 2004.

[7] N. Ratliff, J. Bagnell, M. Zinkevich, Maximum margin planning, Proc.
of the 23rd Int. Conf. on Machine Learning, pp.729-736, 2006.

[8] A. Boularias, J. Kober, J. Peters, Relative entropy inverse reinforce-
ment learning, Proc. of the 14th Int. Conf. on Artificial Intelligence
and Statistics, pp.182-189, 2011.

[9] Y. Qiao, M. Suzuki, N. Minematsu, Affine invariant features and their
application to speech recognition, Proc. of the 34th IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing, pp.4629-4632, 2009.

[10] M. Sugiyama, S. Nakajima, H. Kashima, P. Buenau, M. Kawanabe,
Direct importance estimation with model selection and its application
to covariate shift adaptation, Advances in Neural Information Process-
ing Systems, pp.1433-1440, 2008.

[11] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction,
Cambridge, MA, MIT Press, 1998.

[12] D. Ramachandran, E. Amir, Bayesian inverse reinforcement learning,
Proc. of the 20th Int. Joint Conf. on Artificial Intelligence, pp.2586-
2591, 2007.

[13] G. Masuyama, A. Yamashita, H. Asama, Selective exploration ex-
ploiting skills in hierarchical reinforcement learning framework, Proc.
of the 26th IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp.692-697, 2013.

[14] J. Choi, K. Kim, Nonparametric Bayesian inverse reinforcement learn-
ing for multiple reward functions, Advances in Neural Information
Processing Systems, pp.305-313, 2012.

