魚眼カメラを用いた車走行時の道路シーンの3次元形状復元

森田徹 寺林賢司 梅田和昇(中央大学)

3D shape reconstruction of road scenes using a fish-eye camera mounted on a car

Toru Morita (Chuo University), Kenji TERABAYASHI (Chuo University), Kazunori UMEDA (Chuo University)

Abstract—

For mobile robots and car driving support systems, it is important to understand 3D environment widely at once. We We already proposed a method for modeling 3D environment using a fish-eye camera, which can take a wide-range and distortional image. In this paper, we present experimental results of 3D shape reconstruction of road scenes using a fish-eye camera mounted on a car.

Key Words: 魚眼カメラ, structure from motion(SFM), 車載カメラ

1. 緒言

近年,魚眼カメラを利用した研究が盛んに行われて いる.このカメラは視野角が180°程度あり,被写界深 度が深い.そのため一定姿勢で広範囲のシーンを撮影 することができ、カメラの台数の削減にも繋がる.この ような利点から魚眼カメラは監視用途や自動車の視界 補助システムに利用されている.また移動ロボットの 自律化や自動車の運転支援システムについても一度に 広範囲の3次元環境を把握することが重要であり,魚 眼カメラによるセンシングが有用であると考えられる. この際,精度良く3次元環境をセンシングするにはカメ ラの内部パラメータを正しく推定する必要がある.さ らに一台のカメラで3次元計測を行うには,カメラの 移動前後の相対的な位置・姿勢情報を推定する必要が ある.我々は既に魚眼カメラの内部パラメータを推定 し, Structure from Motion(SFM)を用いて,3次元の環 境モデルを生成する手法を提案している[1].本論文で はこの手法を利用し,車載カメラにより得た画像から カメラ間の位置・姿勢の推定と計測対象の3次元計測 を実際の道路シーンにおいて行い,3次元の環境を復 元することで実用性を検証する.

2. 計測対象の3次元計測手法概要

本論文で用いる 3 次元の環境モデル生成手法の概要 を示す[1].

2.1 魚眼カメラモデル

本論文では,魚眼カメラモデルを以下のように3次 多項式で定義する.

$$r_f = k_1 \theta + k_3 \theta^3 \tag{1}$$

さらに光軸のズレを考慮し,内部パラメータとして

 $\boldsymbol{I} = \begin{bmatrix} k_1 & k_3 & c_u & c_v \end{bmatrix}^T \quad c_u, c_v : 光軸点の位置 \quad (2)$

を用いる.内部パラメータ推定には中野の手法 [2] を 利用する.

2.2 計測対象の3次元計測手法

1台の車載魚眼カメラより連続画像を取得し,2枚 を用いて計測対象の3次元形状復元を行う.処理の手 順を以下に示す.

まず画像を取得し,2枚の画像間の対応点を KLT-Tracker[3] 又は SIFT[4] を用いて求める.次に対応点 情報よりカメラ間の位置・姿勢を推定するため,基本 行列 E を求める [5].求まった E からカメラ間の並進 ベクトル $t = [t_x, t_y, t_z]^T$ と回転行列 R を求めれば, 2 画像間の対応づけを利用して,特徴点の3次元座標 $X_i = [X_i, Y_i, Z_i]^T$ を算出することができる.

その後,特徴点の逆投影誤差の2乗和を最小化する バンドル調整により外部パラメータをより精度良く推 定し,最後に特徴点の3次元座標を再推定する.

3. 実験

以上の手法を用いて, Fig.1の魚眼カメラを車に搭載 した実験システムで道路シーンを撮影した画像から3 次元計測を行った.

3.1 実験環境

CCD カメラは PointGreyResearch 社の Dragonfly2 を,魚眼レンズはスペース社の TV1634M を用いた. TV1634M の内部パラメータは実験により推定された $k1 = 383.778, k3 = -22.272, c_u = 17.534, c_v =$ 17.688を用いる.画像サイズは1024[pixel] × 768[pixel] である.カメラは Fig.1 のようにボンネット前方に魚眼 レンズの光軸方向と車の進行方向が同じになるように 搭載した.光軸方向を Z 軸とし,また右方向を X 軸, 上方向を Y 軸とする.時速 40km 程度で様々な道路を 走行し,30fps で撮影を行った.カメラの高さは約116cm である.また,道路走行直線運動のみとした.この実験 で得た結果を対応点探索手法の違いにより比較し,道 路シーン復元に適した手法を検討する.

3.2 実験結果

まず,100 箇所で提案手法を用いてカメラの運動を 推定した.推定された運動の各成分の絶対値平均を求 めた結果を Table 1 に示す.この結果より,SIFT を用

Fig.1 Experimental System

Table 1	Estimated	camera's	motion
---------	-----------	----------	--------

	\overline{t}_x	\overline{t}_y	\overline{t}_z	$R_x[deg]$	$R_y[deg]$	R_z [deg]
KLT-Tracker	0.191	0.091	0.955	0.19	0.23	0.11
SIFT	0.125	0.036	0.977	0.07	0.08	0.03
True value	0.000	0.000	1.000	0.00	0.00	0.00

いた方がカメラの運動を正確に推定できていることが 示されている.

また, 典型的な 3 シーンにおける 3 次元形状の復元 結果を示す.Fig.2,5,8 に入力シーンを, Fig.3,6,9 に各 シーンで求められた特徴点およびそのフローを,また Fig.4,7,10 に 3 次元形状の復元結果を示す.Fig.4,7,10 に おいて (a)(b) は 3 次元計測結果の正面図, (c)(d) は平面 図を示している.また, (a)(c) は KLT-Tracker, (b)(d) は SIFT により得られた結果である.図の水色の線は,道 路の境界に相当する位置をおおよそ示したものである.

これらの結果より,次のことが分かる.まず,Fig.4 の(c)(d)を比較すると,SIFTを用いた(d)では左側の ビルの壁面も復元できているのが分かる.

また, Fig.5の両脇のテクスチャが複雑なシーンに対 しては, KLT-Tracker を用いた Fig.7(c) では道路脇の形 状が復元できていないのに対し, SIFT を用いた (d) で は道路脇の特徴点からその形状が復元できている.

また, Fig.10のシーンでも, KLT-Tracker での復元結 果は電線の特徴点が正しく復元できていないため道路 シーンの復元に失敗している.以上の結果より,エッ ジベースの KLT-Tracker よりも,特徴点ベースの SIFT の方が精度良く復元できることが分かる.

現段階ではどのような環境でも安定的な対応点の数 を得ることが出来るわけではなく,車の振動により対 応点の取得が上手く行かないこともある.魚眼カメラ を光軸方向に直線運動させた場合,レンズ中心に近づ くに従って特徴点の動きが少なくSFMの精度が出にく いことも影響していると考えられる.これに対しては, 魚眼レンズの中心を無視してレンズの中心付近を除い ての復元や,対応点の探索に放射方向の拘束を取り入 れるなどの対応点探索方法の見直しや,観測する画像の データを増やすことで補完する等が考えられる.

4. 結言

車載魚眼カメラによる道路シーンの3次元環境の復 元を,SFMを用いた手法により行った.実験により, 提案手法で魚眼カメラを用いた道路シーンでの大まか な3次元計測が可能であることを示した.また,対応 点の探索手法として KLT-Tracker よりも SIFT の方が安

Fig.2 Scene 1

(a) KLT (Feature points:340) (b) SIFT (Feature points:104)

Fig.3 Optical Flow for Scene 1

Fig.4 Results of 3D Measurement for Scene 1

定していることを示した.今後の展望としては,誤差 解析や入力画像の枚数を増やすことで,3次元計測を より正確かつ安定にすること,テクスチャ情報を利用 して物体認識に応用させることなどが考えられる.ま た撮影のフレームレート間隔の調整やカメラの内部パ ラメータの推定精度を高めることで,計測精度の向上 を図る.

Fig.5 Scene 3

Fig.8 Scene 2

(a) KLT (Feature points:246) (b) SIFT (Feature points:158) (a) KLT (Feature points:288) (b) SIFT (Feature points:186)

Fig.7 Results of 3D Measurement for Scene 2

文 献 考

- [1] 光本尚訓,寺林賢司,新垣洋平,下村倫子,梅田和昇:" 魚眼カメラを用いた Structure From Motion による 3D 環 境計測",第14回ロボティクスシンポジア予稿集(2009) pp.71-76.
- [2] 中野誠士,李仕剛,千葉則茂: "球面画像獲得のための魚眼 カメラの校正", 電子情報通信学会論文誌 D-II, Vol.J88-D-II, No.9 (2005) pp.1847-1856.
- [3] J. Shi and T. Kanade: "Good Features to Track," Proc. of CVPR, 1994.

Fig.10 Results of 3D Measurement for Scene 3

2 ~

> 10 20 [a.u.]

1

0

10

20 [a.u.]

0 X

-10

- [4] D. G. Lowe: "Object Recognition from Local Scale Invariant Features," Proc. of IEEE International Conference on Computer Vision (ICCV), pp.1150-1157, 1999.
- [5] R. I. Hartley: "In Defense of the Eight-Point Algorithm," IEEE Transactions on Pattern Analysis and Machine intelligence, Vol.19, No.6, pp.580-593(1997).