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Abstract—Background updating is fundamental in mobile
objects detection applications. This paper proposes a background
updating method with a moving stereo camera. The proposed
algorithm is based on the detection of the regions in the image
that have major color intensity in the scene (called light zones).
From these light zones some keypoints are extracted and matched
between the previous background and the current foreground
images. Image registration is performed by moving the old
background image according to the keypoints matching so that
the foreground and background images are mostly aligned. The
proposed method requires that the camera moves slowly and it is
used for moving objects detection with background subtraction.
Three types of keypoints are tested using the same homography:
light zone, SIFT and SURF keypoints. We show experimentally
that, on the average, light zone keypoints performances are equal
to or better than SIFT keypoints, and are faster to compute;
moreover, the SURF keypoints perform worse. To get better
performances, when the light zone keypoints fail, then the SIFT
keypoints are used in a data fusion framework.

I. INTRODUCTION

Moving object detection from a moving camera is funda-
mental in many mechatronic tasks, including autonomous and
industrial robotics and transportation systems.

Most of the moving objects detection schemes refer to fixed
cameras. The main difference between motion detection from
a fixed and a moving camera, is the creation of the background
model.

In this paper we deal with the problem of achieving a stable
background while the camera moves. In this work, we use
the following camera movements: rotations on the vertical
camera axis and translations of the optical axis. The basic
idea is to acquire an initial background image, and to align
it to the subsequent frames. If the camera movement is slow,
there are several features that can be matched between the two
images. The alignment is obtained by moving each pixel of the
background image according to a registration matrix computed
on the basis of the correspondence between the anchor-points
(in the following called keypoints) detected in the background
and foreground images.

The main contribution of this paper is the use of the light
zones detected in the images to extract keypoints. Light zones
are intrinsic features of every image and include reflecting
surfaces and light emitting devices. When the light zone key-
points fail, then the SIFT keypoints are used in a data fusion
framework. The proposed method have better performances

than using SIFT or SURF keypoints in terms of computational
complexity, number of correctly matched frames and quality
of alignment.

It is worth noting that the light zones do not describe objects
characteristics, but only the light and reflectance properties
of the environment; hence, their field of application is more
limited than SIFT or SURF. We will show that SIFT and light
zones keypoints have similar performances in the background
updating task; however the SIFT keypoints are about one order
of magnitude more computationally complex than the light
keypoints and SURF keypoints are simpler to compute but
perform worse. The background updating algorithm described
in this paper has been used in a background subtraction
moving objects detection framework.

This paper is structured as follows. In Section II previous
work on background modeling and updating is summarized. In
Section III an overview of the proposed background modeling
is presented. A detailed presentation of keypoints based on
light zones is reported in Section IV, and the registration
and updating technique is presented in Section V. In Sec-
tion VI SIFT and SURF features are briefly recalled, and their
performances are compared to light zone keypoints. Finally,
Section VII reports some concluding remarks.

II. RELATED WORK

There are many papers dealing with background model-
ing, mostly related to fixed cameras and for mobile object
detection. To this extent, early approaches assumed a stable
background that was coupled with a simple, and known,
noise process or assumed a pixel-wise statistical model that
conformed to a Gaussian [1]. Although stable in controlled
indoor conditions, these techniques are sensitive to global
illumination changes or when local pixel variation is not
modeled in the noise term. More sophisticated approaches
using a multi-modal Gaussian Mixture Model (GMM), for
example [2], were introduced to deal with more scene changes
than previously possible. Non-parametric estimation of a
probability density function (pdf) for both background and
foreground was introduced by Elgammal et. al. [3] to partly
alleviate this. Less papers that deal with moving cameras, as
compared to fixed cameras, have been published. Notably,
[4] deal with pan/tilt camera movements. The authors de-
scribe approaches for coping with inaccuracies due to motion
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blur, mixed pixels at object boundaries, and errors in image
stabilization caused by noise, small camera translations or
minor errors. The background modeling problem under free-
moving camera movements is treated in [5] and [6]. Both
derive a dense-correspondence between pixels, but [5] models
the correspondence between current frame and background
model using a minimal span tree, while [6] derives a multi-
layer homography algorithm. Detection of motion regions in
video sequences observed by a moving camera is described
in [7], using a measure of the inconsistency between the
projective structures from the same point under camera motion
and reference plane change. In [8] is described an approach
that estimates the camera motion between consecutive frames
using the similarity between frames; the similarity is computed
by correlating edge segments. In [9] the background model is
obtained by collecting good statistics among the appearance
of each 2D location.

III. BACKGROUND MODELING ALGORITHM OVERVIEW

The stereo camera used in this work is a Bumblebee [10]
stereo camera, which is a Firewire CCD camera with a
definition of 640x480 pixels at 48 fps. We consider images
acquired by the stereo camera: they are combined and rectified,
and for each pixel its depth is computed.

As a moving camera is considered, the background image
should be updated in order to take into account the viewpoint
change. If the movement of the stereo camera is slow, the
previous (background) and the current (foreground) images
acquired by the system have a strong correlation, as the portion
of the environment captured in the images is almost the same,
as shown in Fig. 1.

Fig. 1. Background (left) and foreground (right) images.

The algorithm is summarized as follows (Fig. 2). Initially,

Fig. 2. Overview of the background update algorithm.

the system uses the first image as initial background. Then,

starting from a stereo image of the foreground, the algorithm
performs the following steps: A) detection of keypoints in both
foreground and background images; B) matching of keypoints
between foreground and background; C) images omography
using pixel position and depth; D) background update.

As the algorithm provides to map the old background
on the new viewpoint of the camera, a change detection
algorithm (based for instance on background subtraction) can
be performed.

We propose to use the regions of the images that have high
color intensity. The updating process based on these regions in
some cases can fail, for example when the number of detected
keypoints is not enough to compute the registration transform.
In these cases, another set of keypoints are estimated using
other approaches, i.e. SIFT.

IV. LIGHT ZONE KEYPOINTS

In computer vision, researchers have concentrated their
attention on the detection of changes or features in order
to recognize and localize objects. The use of illuminated
components of images as features has not been taken into
account so far. Light sources or reflecting surfaces are usually
present in real images taken both in indoor and outdoor
environment, and are not so wide in the image if the camera
has an automatic white balance activated.

Starting from these considerations, we have defined a tech-
nique suited to identify such keypoints in every image. The
proposed methodology uses the color distribution histograms,
that can be computed for every image, to detect keypoints:
a threshold on each color component is adaptively chosen
and the regions of the images that are over these thresholds
(light zones), are used to estimate the points to correlate the
background and the foreground images, under the assumption
that the two images are taken from a camera that moves slowly.

More precisely, the proposed method analyzes the color
histograms of the image in order to detect the pixels belonging
to light zone. The images are taken using the Bumblebee color
camera as reported in Section III and are represented in the
RGB color space [11]. More precisely, a pixel in the color
image is considered belonging to a light zone if the intensity
of each color channel Ic is greater than a threshold mc, where
c represent the name of the color channel (Red, Green or Blue).
The threshold mc is adaptively computed in each image, as
reported in the following.

Given an image A, for each channel of the image, the
histogram Hc is computed: Hc represents, for every intensity
value in the range [0..255], the number of pixels in the image
that present that particular value of the component (Fig. 3).
The histogram Hc is analyzed as follows. For each Hc, the last
local maximum Mc is computed, starting from the maximum
intensity down to the minimum:

Mc =

{
i if

(
M i − Mi

α

)
≥ Hi

c and Hi
c > σ

0 otherwise
(1)

where i is the histogram index in the range [0, 255] and M i

is the maximum number of entries obtained since the bin i.
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Fig. 3. RGB component histogram of a 2D color image. The vertical lines
depict local minimum.

From Mc is than searched the local minimum mc as follows:

mc =

{
i if

(
mi − mi

α

)
≤ Hi

c and Hi
c > σ

0 otherwise
(2)

where mi is the minimum number of entries obtained since
the bin i. In eq. (1) and (2), α is greater that one constant value
needed for reducing oscillations, and σ is the noise level.

The mc thresholds are then used to create a mask M1 which
defines if a pixel is in a light zone. For each point of the
image, a pixel (x, y) is considered belonging to a light zone
if (IR ≥ mR) ∧ (IG ≥ mG) ∧ (IB ≥ mB) is true. In Fig. 4
some examples of light zones are depicted in red.

Finally, the keypoints are selected in each light zone. More
precisely, adjacent pixels are grouped in connected regions
using an iterative connecting graph approach on the mask M1.
Only the regions containing more than k points are used (k=5
is usually a good choice). The center of each light zone is a
light zone keypoint.

A. Light zone keypoints matching

The light zones keypoints belonging to the foreground
image (C) and the background image (C ′) are matched in
order to perform registration.

Let us call n the maximum number of points in C and C ′,
n = max(|C|, |C ′|), and k = min(|C|, |C ′|). There are k
possible connections between background and foreground: a
list of indexes, l[.], is built considering all possible groups of
k indexes in the set of n keypoints; the number of such groups

is ln,k =

(
n
k

)
.

For each keypoint, a matching score is estimated to repre-
sent the spatial relation that each keypoint has with the other
keypoints of its group. The matching score is evaluated on the
basis of the Euclidean distance, the Manhattan distance, the
horizontal and vertical distances and the orientation distance
of the point with the other points.

The five distances are estimated as follows:
di =

∑l[k]
j=l[1]

√
(Ci,x − Cj,x)2 + (Ci,y − Cj,y)2,

dMi =
∑l[k]
j=l[1] |Ci,x − Cj,x|+ |Ci,y − Cj,y|,

dHi =
∑l[k]
j=l[1](Ci,x − Cj,x),

dOi =
∑l[k]
j=l[1](Ci,y − Cj,y),

Fig. 5. Successful (left) and unsuccessful (right) correspondence points
detection with light zone detection. The unsuccessful correspondence is due
to insufficient number of light zones.

dφi =
∑l[k]
j=l[1] arctan

Ci,y−Cj,y

Ci,x−Cj,x
,

for every region i.
Each light zone keypoint of the background image is

matched with each light zone keypoint of the foreground
image. The matching score of each group is computed as the
sum of the normalized distances. The match between the group
i (from background image) and j (from foreground image) is
obtained as the minimum difference of normalized distances
as follows.

Given
∆d =

(
di−dmax

dmax−dmin
− dj−dmin

dmax−dmin

)2
,

∆dM =
(

dMi−dMmax

dMmax−dMmin
− dMj−dMmin

dMmax−dMmin

)2
,

∆dH =
(

dHi−dHmax

dHmax−dHmin
− dHj−dHmin

dHmax−dHmin

)2
,

∆dO =
(

dOi−dOmax

dOmax−dOmin
− dOj−dOmin

dOmax−dOmin

)2
,

∆dφ =
(

dφi−dφmax

dφmax−dφmin
− dφj−dφmin

dφmax−dφmin

)2
,

the match is performed as

(i, j) = argmin
(√

∆d+ ∆dM + ∆dH + ∆dO + ∆dφ
)
.

(3)
In Fig. 5, left column, we report a correspondence points

example. In the top image, the background picture of an indoor
environment is shown. After a camera rotation, the acquired
picture is reported in the bottom of Fig. 5, left column,
showing that a person moved into the scene. The keypoints
detected as light zones are depicted in red.

In the same environment, after a while, another image is
acquired and it shown in Fig. 5, right column. In this case
there are no enough light zones and other keypoints must be
used.

V. BACKGROUND UPDATE

We use the registration method described in [12][13][14]
to evaluate the registration matrix needed to perform the
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Fig. 4. Examples of detection of light zones in indoor and outdoor environments.

rototranslation of the background. From the matching phase,
we obtain a list of keypoint pairs suitable for initial estimation
of the relative pose.

The light zone keypoints can be replaced by SIFT [15]
keypoints if using light zones the performances are not sat-
isfactory. The following pseudocode represents a data fusion
framework that describes how the two kinds of keypoints are
used together.

IF (number of light zones > thr1) THEN
Use the light keypoints;
IF (background updated image rotation > thr2)
THEN Use the SIFT keypoints;

ELSE
Use SIFT keypoints;

where thr1 is the minimum number of keypoints required
for a correct registration transform (typically equal to 3), and
thr2 is the maximum allowed camera rotation.

As we use a stereo camera to get the input foreground
images, we associate the coordinate (x,y) of every keypoint
with its depth provided by the stereo camera.

A. Stereo images registration

We call bi = (xi, yi, zi)
T a generic keypoint in the

old background image (from the previous viewpoint) and
fi = (x′i, y

′
i, z
′
i)
T its corresponding keypoint in the foreground

image (from the current viewpoint). The pairs (bi, fi) of
matched keypoints are used to calculate the transformation
matrix to rotate the background image.

A registration transform is applied to determine the optimal
rotation and translation of the first collection of points. Hence,

we compute the minimum of the alignment error

E =
∑
i

[(R bi + t− fi) · ni]2 (4)

with respect to the rotation R (3x3 matrix) and translation t
(3x1 matrix), where the points (bi, fi) have normals ni .

B. New background

The transformations given by R and t in eq. (4) are applied
to the old background image to obtain the coordinate of
the new background (relative to the current viewpoint of the
camera): 

x′

y′

z′

1

 =

[
R t
0 1

]
x
y
z
1

 (5)

With the rotated points, a mask M2 is created. This mask is
used to avoid the subtraction of not rotated points and it will
be used in eq. (6).

Then, an orthogonal projection matrix is used to calculate
the coordinate of the points of the background Bx,y on the
new viewpoint. Moreover, the background Bx,y is updated
including the information of the current foreground Fx,y .

B′x,y =

{
Bx,y if M2(x, y) is true
Fx,y otherwise (6)

The inclusion of part of the foreground can corrupt the
background which should be reset to the foreground when
no mobile objects are detected in the current frame.
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VI. SIFT, SURF KEYPOINTS AND COMPARISON WITH
LIGHT ZONES

To test light zone keypoints in the update background
technique, we have compared its performances to other clas-
sical techniques used in literature to identify keypoints in
an image. More precisely, Scale-Invariant Feature Transform
(SIFT) [16], [15] is an algorithm to detect and describe local
features in images and can be used to estimate keypoints.
In [17] it was presented a variant of SIFT, called SURF,
which requires much less computations than SIFT. SURF is a
performant scale and rotation invariant interest point detector
and descriptor algorithm. Both the algorithms use the k-nearest
neighbor (KNN) algorithm on the features for correspondence
matching between two images.

The methodologies related to the keypoints obtained with
light zones, SIFT and SURF have been experimentally com-
pared by computing the average luminosity levels of the
background subtracted images for different environments when
the number of keypoints were sufficient to update the back-
ground. Clearly, if the background updating were ideal, the
background subtracted image would be completely black (or
zero intensity level). Since the background updating is not
ideal, the subtracted image is gray. In general, the darker is
the image, the better the algorithm performs. This comparison,
reported in Fig. 6, is performed by computing the average
intensity versus translation and rotation movements of the
camera. Fig. 6 shows that light zones keypoints performs
slightly better than SIFT keypoints and SURF performs worse.

The computing time using a 2 GHz AMD processor is about
0.33 s for the SIFT keypoints, 0.08 s for SURF and 0.02 s
for light zone keypoints. The current implementation of the
whole algorithm using light zones requires about 0.2 s in the
above PC, versus about 0.8 s for the program based on SIFT
keypoints.

Another test aims at detecting in how many frames the
background updating fail. In a test considering 10000 frames,
about 80% have been correctly matched using only light zone
keypoints, about 85% using only SIFT keypoints, and about
90% using the algorithm described in Sec. V. That means that
the described data fusion framework correctly recover about
10% of the frames. From this test, we have noted that SIFT and
light zones are rather complementary, because when there are
insufficient or poor light zones the light zone method typically
fails while SIFT typically succeeds and vice-versa.

Finally, Fig. 7 shows how the proposed algorithm updates
the background. In this image, from left to right, four different
scenarios are depicted. The camera is slowly rotating to the
right. The top four rows represent the updated background,
the fifth row represent the foreground and the bottom row
represents the background subtracted image.

VII. FINAL REMARKS AND CONCLUSION

In this paper an algorithm for background updating using
images taken from a mobile stereo camera for the purpose of
mobile object detection is described. The proposed method is
based on light zones keypoints, i.e. regions that have intensity

over an adaptive threshold, and to the spatial correlation
between two consecutive viewpoint of the camera. Stereo
images are used to obtain a registration in 3D space.

The property of light zones and light zone keypoints are:
the light zones are defined on every image; light zones are
defined based on an adaptive threshold; light zones are capable
to identify light sources and reflections if present in the image;
light zone keypoints are defined as the center of light zones
that have more than a certain number of connected points;
the number of light zone keypoints can be small, even zero
in artificial images, but in real images are usually enough to
match the background.

The proposed keypoints are not an alternative to SIFT or
SURF keypoints, however. They do not represent interesting
points in the image as does SIFT for example, their utility
is limited to background-foreground images registration, and
they are constrained to slow movements of the camera. How-
ever, they have better performance in the described algorithm
and are faster than both SIFT and SURF.

The camera has small movements, only translation or ro-
tation. In the majority of the tested environments, the two
methods produce the same result. As there are cases in which
the light zone methods is not capable to detect keypoints
(for example on non-decrescent histograms), we use both the
methods, namely light zone keypoints if a sufficient number
is detected, otherwise using SIFT keypoints.

Current work is directed towards a real-time implementation
of the algorithm.
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