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This paper proposes a method for measuring 3-
dimensional (3D) environment and estimating cam-
era movement with two fish-eye images. This method
deals with large distortion of images from a fish-eye
camera to calibrate internal and external camera pa-
rameters precisely by simultaneous estimation. In this
paper, we analyze 3D measurement accuracy based on
a theoretical model and evaluate it in practical analysis
in experimental and real environments. These analy-
ses show that the theoretical measurement error model
works over a wide range of fish-eye views.

Keywords: fish-eye, structure from motion, three dimen-
sional measurement, error analysis

1. Introduction

To get images of wide field of view, there are several
types of cameras - omnidirectional [1, 2], spherical [3],
and fish-eye [4, 5] - capture the wide-field images used
in robot and car-driver support applications. The fish-eye
camera is most appropriate in driving support system for
the following reasons. The first one is the installed posi-
tion of cameras. Both omnidirectional and spherical cam-
eras restrict the position to special locations such as on the
top of a car. The second one is the directivity of captured
image resolution. The fish-eye camera on the front of a
vehicle has the same view as the driver [6].

In related work, Shigang and Shimomura [4] developed
a system for lane marking detection with side fish-eye
camera, although this was restricted to 2-dimensional line
on the ground. The fish-eye stereo camera system pro-
posed by Gehrig et al [5] and Nishimoto et al [7] measures
a 3-dimensional (3D) environment but is too costly for ve-
hicle installation. Xiaoming et al [8] proposed spherical

panorama generation with two fish-eye images for immer-
sive display in virtual reality, but measurement accuracy
was not considered.

We propose 3D measurement with two images captured
by a single fish-eye camera by estimating camera move-
ment, and analyze accuracy based on a theoretical model.
We deal with large distortion of fish-eye image by cali-
brating internal and external camera parameters precisely
and simultaneously.

This paper is organized as follows: Section 2 introduces
a fish-eye camera projection model. Section 3 outlines
our proposal. Section 4 details our algorithm to measure
3D environment by estimating camera movement. Sec-
tion 5 discusses measurement accuracy theoretically and
experimentally in Sections 6 and 7. Section 8 summarizes
conclusions.

2. Fish-Eye Camera Model

Fish-eye lens projection changes with the objective of
use. Typical projection models are the following four:

(i). Equidistance projection:

r f = δθ . . . . . . . . . . . . . (1)

(ii). Orthogonal projection:

r f = δ sinθ . . . . . . . . . . . . (2)

(iii). Stereographic projection:

r f = 2δ tan(θ/2) . . . . . . . . . . (3)

(iv). Equisolid angle projection:

r f = 2δ sin(θ/2) . . . . . . . . . . (4)
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r f is the distance from the projection point to the lens
axis and θ is the angle formed by the projection line and
the lens axis. Parameter δ is the following ratio of focal
length f [mm] and pixel size w [mm]:

δ = f /w. . . . . . . . . . . . . . . (5)

However, general-purpose fish-eye lens projection can-
not be represented by the above projection models be-
cause of the influence of in-process noise, etc. In this
study, we define the fish-eye camera model as the follow-
ing 5th polynomial:

r f = k1θ + k3θ 3 + k5θ 5. . . . . . . . . (6)

ka(a = 1,3,5) is an internal camera parameter. In consid-
eration of the gap between the optical axis and the center
of a CCD element, the internal parameters are defined as
follows:

III = [k1 k3 k5 cu cv]T . . . . . . . . . . (7)

(cu,cv) is the relative position of optical axis. These pa-
rameters are estimated precisely as described in previous
work [9].

3. Overview

Modeling a 3D environment using a fish-eye camera
and estimating camera movement involve the following 6
steps, as shown in Fig. 1:

(i). Two images are captured by the fish-eye camera at
different observation points during camera move-
ment.

(ii). Corresponding feature points are searched for and
extracted from the images.

(iii). Camera movement is estimated using information of
corresponding feature points.

(iv). 3D positions of feature points are calculated using
estimated camera movement based on the principle
of triangular surveying.

(v). Camera movement precision is improved using bun-
dle adjustment [10].

(vi). 3D positions of feature points are recalculated using
optimized camera movement generating a 3D envi-
ronment model with color information.

4. 3D Measurement

4.1. Search for Corresponding Points
Corresponding points are searched for in images in the

fish-eye image sequence. Feature points - a corner and an
edge point for example - are extracted from the first image
and tracked along the sequence. We use Lucas Kanade
(LK) tracker algorithm with pyramid representation [11]

Fig. 1. Outline of 3D measurement.

Fig. 2. Sphere model and ray vector definition.

indoors because it is easier to calculate congruent points
than outdoors. We use the Scale-Invariant Feature Trans-
form (SIFT) [12] algorithm outdoors despite the high cal-
culation cost because it calculates corresponding points
more precisely than the LK-tracker.

4.2. Ray Vector Calculation

As shown in Fig. 2, we define an unit vector as a ray
vector whose direction is from the lens center of the cam-
era toward an object point in 3D space. The ray vector of
fish-eye camera is given as follows:

ppp =
[

sinθ cosφ sinθ sinφ cosθ
]T

. . (8)

θ is the zenith angle and φ is the azimuthal angle, as
shown in Fig. 2. These angles are calculated from image
coordinates [u,v]T of the feature point as follows:

k1θ + k3θ 3 + k5θ 5 −
√

(u− cu)2 +(v− cv)2 = 0 (9)

φ = tan−1
(

v− cv

u− cu

)
. . . . . . . . . . (10)

The zenith angle may have more than one solution but
the solution must have the consistency of angular con-
straint within a range from 0 to π/2 rad. This angle
is calculated using the Van Wijngaarden-Dakker-Brent
method [13].
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4.3. Essential Matrix Calculation
Essential matrix EEE is calculated using ray vectors pppi =

[xi,yi,zi]T and ppp
′
i = [x

′
i,y

′
i,z

′
i]

T , which are those of the cor-
responding points in the two images [14]. This matrix has
information on the camera motion direction and rotation,
so camera movement is calculated by matrix EEE. The re-
lationship between essential matrix EEE and ray vector ppp is
given as follows:

ppp
′T
i EEE pppi = 0. . . . . . . . . . . . . . (11)

Eq. (11) is transformed as follows:

uuuT
i eee = 0 . . . . . . . . . . . . . . . (12)

where

uuui = [xix
′
i,yix

′
i,zix

′
i,xiy

′
i,yiy

′
i,ziy

′
i,xiz

′
i,yiz

′
i,ziz

′
i]

T ,

eee = [e11,e12,e13,e21,e22,e23,e31,e32,e33]T .

Parameter eeei j is the row i and column j element of ma-
trix EEE. The matrix has 9 elements and the matrix scale is
arbitrary, so essential matrix EEE is obtained by solving si-
multaneous equations for at least 8 pairs of corresponding
ray vectors.

4.4. Outlier Removal
Data on corresponding points tracked between two im-

ages may include points of mis-tracking adversely af-
fect results for essential matrix EEE and camera move-
ment estimation. We use the random sample consensus
(RANSAC) [15] to remove these points as outliers as fol-
lows:

(i). Eight feature points are randomly chosen and.

(ii). essential matrix EEE is calculated as described above.

(iii). Using ray vectors pppi, ppp
′
i in two images, the number k

of feature points satisfying Eq. (13) is counted:

|ppp′T
i EEErand pppi| < q . . . . . . . . . . (13)

q is a threshold.

(iv). Steps (i)-(iii) are repeated 20 times.

(v). For the maximum number of k, feature points not
satisfying Eq. (13) are removed as outliers.

Essential matrix EEE is calculated using remaining feature
points.

4.5. Camera Motion Estimation
Camera movement is estimated from essential matrix

EEE using the relationship between essential matrix EEE and
translation vector ttt = [tx, ty, tz]T given by:

EEET ttt = 0. . . . . . . . . . . . . . . (14)

Vector ttt, which is the unit vector of ttt calculated above,
is the eigenvector to the minimum eigenvalue of matrix

Fig. 3. Measurement of 3D position.

EEEEEET . For camera rotation, the relationship between es-
sential matrix EEE and rotation matrix RRR is as follows:

EEE = [ttt]×RRR . . . . . . . . . . . . . . (15)

[ttt]× =

⎡
⎣ 0 −tz ty

tz 0 −tx
−ty tx 0

⎤
⎦ . . . . . . . . (16)

For Eq. (15), matrix RRR is the solution minimizing

c1 = ‖EEE − [ttt]×RRR‖2. . . . . . . . . . . (17)

Symbol ‖ ‖ is the Frobenius norm, and Eq. (17) is solved
using a quaternion.

4.6. 3D Measurement
3D positioning of object points XXXiii = [Xi,Yi,Zi]T pro-

jected as feature points in the image are calculated using
translation vector ttt and rotation matrix RRR. 3D positioning
of an object point is the intersection of the two ray vectors
in two images, but noise may prevent this intersection, so
3D coordinate XXXiii is defined as the point at which the sum
of squares of the Euclidian distance from point XXXiii to the
two lines is minimized (Fig. 3). 3D positioning of feature
points are calculated as follows:

XXXi = BBB−1bbb . . . . . . . . . . . . . . (18)

BBB = 2III − pppi ppp
T
i

pppT
i pppi

− RRRppp
′
i ppp

′T
i RRRT

ppp
′T
i ppp

′
i

. . . . . . . (19)

bbb =

(
III − RRRppp

′
i ppp

′T
i RRRT

ppp
′T
i ppp

′
i

)
ttt. . . . . . . . . (20)

4.7. Inaccurate-Point Removal
Measurement accuracy become worse as object points

approach the baseline direction or go far from the camera.
Points with different accuracy are included in measure-
ment data, so to restrict use to high-accuracy data alone,
the measurement accuracy evaluation function is defined
as follows [2]:

ggg =
∣∣∣∣∂XXXi

∂ui

∣∣∣∣+
∣∣∣∣∂XXXi

∂vi

∣∣∣∣+
∣∣∣∣∂XXXi

∂u
′
i

∣∣∣∣+
∣∣∣∣∂XXXi

∂v
′
i

∣∣∣∣ . . . (21)

Vector ggg is the sum of the absolute value that derives the
partial differential of measurement result XXXiii by image co-
ordinates of two feature points [ui,vi]T , [u

′
i,v

′
i]

T . Any point
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at which vector ggg does not satisfy Eq. (22) is removed be-
cause its measurement accuracy is low:

‖ggg‖ < h . . . . . . . . . . . . . . . (22)

where h is a threshold.

4.8. Bundle Adjustment

The above camera movement and 3D measurement
data may not always yield good results because of image
error. So we use bundle adjustment [10] to simultaneously
optimize camera motion and measured 3D points by solv-
ing a nonlinear least squares problem using the estimated
as initial values. This optimization is to minimize the sum
of feature reprojection error, which is the difference be-
tween the original feature point coordinate in captured
images and the coordinate with which 3D measurement
data is reprojected to the image plane.

The image coordinates of reprojected feature points at
two observation positions are calculated as follows:

uuub1 =
[

ub1
vb1

]
=

k1θ + k3θ 3 + k5θ 5√
X2

i +Y 2
i

[
Xi
Yi

]
. (23)

uuub2 =
[

ub2
vb2

]
=

k1θ ′
+ k3θ ′3 + k5θ ′5√

X
′2
i +Y

′2
i

[
X

′
i

Y
′
i

]
(24)

where

θ = tan−1

⎛
⎝
√

X2
i +Y 2

i

Zi

⎞
⎠ . . . . . . . (25)

θ
′
= tan−1

⎛
⎝
√

X
′2
i +Y

′2
i

Z
′
i

⎞
⎠ . . . . . . (26)

Coordinates uuub1,uuub2 are reprojected points in two images.
Parameters XXXi = [Xi,Yi,Zi]T and XXX

′
i = [X

′
i ,Y

′
i ,Z

′
i ]

T are 3D
coordinates of the feature point at each observation loca-
tion. Parameter XXX

′
i is the coordinate for which coordinate

conversion of parameter XXXi is done using translation vec-
tor ttt and rotation matrix RRR. We define the sum of feature
reprojection errors as:

c2 =
n

∑
i=1

2

∑
j=1

(uuu j −uuub j)2. . . . . . . . . (27)

c2 is the sum of reprojection errors, uuu1 and uuu2 are original
feature points coordinates in two images, and n is the sum
of reprojected feature points. To minimize c2, we use the
Levenberg Marquardt method [13]. In optimization using
all feature points, calculation cost becomes expensive, so
we use the RANSAC [15] as follows:

(i). Several feature points - at least 6 - are randomly cho-
sen.

(ii). Using these feature points, camera movement is op-
timized and estimated.

(iii). Using optimized camera movement, 3D locations are
calculated for all feature points.

(iv). Using 3D location data and optimized camera move-
ment, feature reprojection errors c2 is evaluated.

(v). Step (i)-(iv) are repeated 20 times.

(vi). The case in which c2 is minimum is chosen and cam-
era movement estimated at this time is determined as
optimum.

(vii). Using optimum camera movement, 3D locations are
calculated for all feature points.

4.9. Texture Mapping

Generating a 3D model from 3D measurement data in-
volves modeling using the Delaunay triangulation method
to generate triangular meshes for obtained 3D measure-
ment data. A texture image is pasted on each surface
of the generated triangular mesh to construct a 3D model
with color information.

5. Disturbance Model

To discuss accuracy of 3D measure with two fish-eye
images, as shown in Fig. 4, we consider a case in which
the camera moves in the direction of the optical axis.

Assuming that the distance d from the camera to a mea-
suring point is sufficiently greater than the base length
bc, we develop the following based on geometric relation-
ship:

d =
bcsinθ

Δθ
. . . . . . . . . . . . . . (28)

where θ is the angle made by the projection line and the
lens axis and Δθ is the difference of θ between observa-
tion points. If a propagation rule of error is applied to
Eq. (28), uncertainty σd of the measurement distance is
given as follows:

σd =
d2

bcsinθ
σΔθ . . . . . . . . . . . . (29)

σΔθ is Δθ uncertainty. We consider σΔθ as a constant,
because d is sufficiently larger than bc. From Eq. (29),
the uncertainty of distance d is proportional to the square
of d, and inversely proportional to sinθ .

6. Experimental Environment Error Analysis

Measurement errors are analyzed in two experiments
based on the above disturbance model. The first experi-
ment treats the central fish-eye image and the second fo-
cuses on the super-wide image angle area. These exper-
iments are conducted in an experimental environment in
which measurement points are easily controlled.
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Fig. 4. Geometrical relationship between a measurement
point and fish-eye camera moving toward optical axis.

Fig. 5. Checkerboard sheet used for error analysis.

6.1. Error Analysis in Central Fish-Eye Images

It is verified whether our proposed method follows the
above disturbance model of Eq. (29) for central area of
fish-eye images. This experiment evaluates the distur-
bance model at distance d with θ fixed with θd based on d.
When evaluating the model at θ , d is fixed with dθ based
on θ . These evaluations change the disturbance model of
Eq. (29) to Eq. (30) at distance d, and to Eq. (31) at θ :

σdsinθd =
d2

bc
σΔθ . . . . . . . . . . . (30)

σd

d2
θ

=
1

bcsinθ
σΔθ . . . . . . . . . . . (31)

By verifying the disturbance model of Eqs. (30) and (31),
we determine whether the proposed method follows the
model of Eq. (29).

The 3D location of grid points on the checkerboard
sheet shown in Fig. 5 are measured as targets. The size of
the sheet is 3656 × 5292 mm. The CCD camera used is
Dragonfly2 (Point-Grey-Research), and the fish-eye lens
is TV1634M (SPACE). The internal camera parameter is
set to a value estimated experimentally (k1 = 365.85, k3 =
−13.68, k5 =−0.85, cu = 10.14, cv = 17.10). The image
size is 1024 × 768 pixels. The camera was set to make the
optical axis perpendicular to the checkerboard sheet, and
the camera and the sheet were placed 1000 mm apart. The
base length of camera movement was 40 mm long.
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Fig. 6. Error analysis about d.
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Fig. 7. Error analysis about θ .

3D measurement errors were analyzed by comparing
the measured 3D position and ground truth. The origin
of world coordinates was the camera lens center before
movement. The 3D location of the feature point measured
using our proposal has uncertainty of scale, so scale was
specified using the ratio between designed and estimated
camera movement parameters.

Error analysis results at d and θ are shown in Figs. 6
and 7. In these figures, the solid line shows the distur-
bance model and each point indicates measured error de-
viation calculated using nearest 15 data.

In Fig. 6, measurement error deviation tends to be pro-
portional to the square of distance d, consistent with the
disturbance model of Eq. (30). Since each measured error
deviation in Fig. 7 was inversely proportional to sinθ , the
result followed the disturbance model of Eq. (31). So the
disturbance model of Eq. (29) is appropriate for for 3D
measurement error of our proposal using two images cap-
tured by a fish-eye camera within “d = 1000−2800 mm”
and “θ = 0.2−1.2 rad.”

6.2. Error Analysis in Super-Wide Fish-Eye Image
Angle

In the previous experiment, it was not clear whether the
disturbance model of Eq. (29) was valid in a super-wide
angle (θ > 1.4 rad), so we conducted an error analysis
experiment for this area.

In our experimental environment, measurement data
for a wide angle area may not always be obtained from
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Fig. 8. Error analysis comparing theoretical disturbance
model and measured error at θ −d space.

Fig. 9. Absolute difference in measured data σd and distur-
bance model.

one measurement. To obtain sufficient points to calcu-
late measurement error deviation, 3D measurement was
done at 8 observation points. Since dense measurement
data can be acquired from multiple experiments, the dis-
turbance model of Eq. (29) can be analyzed from the as-
pect of σd , d, and θ simultaneously.

The deviation of measurement error σd was calculated
using data from 8 experiments, plotted in Fig. 8 with the
curve surface of the disturbance model of Eq. (29). De-
viation σd was calculated using nearest 16 measurement
data. Fig. 8 shows that error deviation σd is proportional
to the square to distance d and inversely proportional to
sinθ over a wide range of measurement, excluding super-
wide angle area (θ > 1.4 rad).

To verify the disturbance model easily, absolute differ-
ence Δσd between the disturbance model and measured
error deviation is shown in Fig. 9. This figure shows that
the difference Δσd is large in the super-wide angle.

Based on Figs. 8 and 9, the disturbance model of
Eq. (29) is not appropriate for our proposal in super-wide
angle (θ > 1.4 rad) but appropriate in other areas for 2
reasons:

(i). The disturbance model of Eq. (29) does not treat fish-
eye lens distortion obviously, and

(ii). the large distortion seen in super-wide angle (θ >
1.4 rad) enlarges measurement error due to the low-
resolution image.

These points indicate the importance of introducing fish-

Fig. 10. Input image captured in stair environment.

eye distortion models into new measurement error model
as a future work.

Modifying fish-eye lens projection described in Sec-
tion 2 is another way to improve the fitness of the error
model. Kannala and Brandt [16] reported the importance
of the tangential factor in the projection model of a fish-
eye camera, so our projection model of Eq. (6) may re-
quire both radial and some tangential factors.

7. Actual Environment Error Analysis

We verified the disturbance model of Eq. (29) in actual
environments in contrast to experimental environments in
the previous section.

7.1. Experimental Setup

The experimental setup is the same as in Section 6. The
fish-eye camera moved in the direction of the optical axis
with base length bc = 100 mm. Two fish-eye images were
captured before and after camera movement as shown in
Fig. 10, where stair environment was measured to verify
the disturbance model in an actual environment. This is
because this environment makes it easier to determine the
3D structure as ground truth than the general-purpose en-
vironment.

7.2. Experimental Results

Figure 11 shows the 3D model obtained from the two
images. The appropriateness of the 3D model of the stair
environment is confirmed in Figs. 11 (a) and (b).

In this measurement result, measured stairs data was
used to verify the disturbance model due to 2 reasons:

(i). It was easy to calculate measurement error at each
measured points because of the distance between
these points and the plane along with stairs, and

(ii). dense measured data could be obtained for calculat-
ing measured error deviation.

Figure 12 shows error analysis with the disturbance
model and measured error deviation using stair data. The
measured error deviation was calculated using close data
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(a) Front

(b) Side
Fig. 11. 3D measurement result with texture.
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Fig. 12. Error analysis in an actual environment comparing
theoretical disturbance model and measured error at θ − d
space.

errors. This figure is sparser than the result for error anal-
ysis in an experimental environment, as shown in Fig. 8,
due to the small number of measured points in the ac-
tual environment. This error analysis was done in the
range of “d = 1200−2400 mm” and “θ = 0.3−1.3 rad.”
There is no data in a super-wide angle of fish-eye images
(θ > 1.4 rad).

To verify the disturbance model easily, the absolute dif-
ference Δσd between the disturbance model and measured
error deviation is shown in Fig. 13. This figure shows the
variation of Δσd is sufficiently small because the ratio to
distance d is less than 5%.

The disturbance model of Eq. (29) was verified by this
error analysis in an actual environment, consistent with
previous experimental results.
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Fig. 13. Absolute difference in each data σd and disturbance
model in an actual environment.

8. Conclusions

We have proposed measuring 3D environments using
a single fish-eye camera. Measurement errors were an-
alyzed theoretically and experimentally. A disturbance
model developed theoretically for a camera moving in the
direction of the optical axis was found to be verified in ex-
perimental and actual environments. Results showed that
our method follows the disturbance model we developed
in a wide range of fish-eye views except in a the super-
wide angle.

Projected work includes expanding error analysis to
structure from motion using multiple fish-eye images.
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