フラッシュを使用したデジタルカメラでの距離計測の一手法

○小川直哉(中央大学) 梅田和昇(中央大学)

Range Measurement by a Digital Camera using Flash

*Naoya OGAWA(Chuo University), Kazunori UMEDA(Chuo University)

Abstract – Various methods have been proposed until now for range measurement or three dimensional shape reconstruction. However, most of the methods need a large-scale equipment or a special environment. This paper proposes a technique which obtains a range image easily under a general environment using only an off-the-shelf digital camera. Distance is calculated by obtaining the irradiance of scene which is lighted by the flash of a digital camera. It is obtained by subtracting an image without flash from an image with flash. Color information is simultaneously obtained because visible light is used. Experiments show that a range image is roughly obtained by the proposed method.

Key Words: digital camera, flash, range image

1. 序論

現在,距離計測や形状復元の手法として様々な手 法が提案されているが,大がかりな装置や特殊な環 境が必要とされるものが多い.

ステレオ画像法[1][2]では、異なる位置に置かれた 2台のカメラを用いて三角測量の原理を利用して対 象物体までの距離を測定することができるが、対応 点の探索が問題となる.これを解消するために、3 台のカメラを用いる方法やレーザプロジェクタを 用いる方法が提案されている.照度差ステレオ法[2] は、固定された視点から異なった照明条件で撮像さ れた複数枚の画像により形状を求める手法で、光源 のコントロールが必要であり、無限遠光源という仮 定がある.Shape-from-Shading法[2]は、単光源で対 象物を照射し、単画像から観測される陰影をもとに 形状を復元する手法で、照度差ステレオ法と同様に 無限遠光源を仮定し、光源のコントロールが必要で ある.しかし実環境ではこれらの条件は一般に満た されない.

また、安価な装置を利用して三次元形状を復元す るものとしてCyberModeler[3]がある.これは、参照 マークが印刷された回転台上に物体を設置し、回転 台を回転させながら市販のデジタルカメラで複数 枚の画像を撮像し、参照マークからカメラの位置を 計算し、全方位の画像を取得することでシルエット から三次元形状を計算するものである.装置は安価 であるが、回転台が必要であり、シルエットを抜き 出すために背景紙を設置しなければならないなど 環境に制約がある.

東芝が開発したモーションプロセッサ[4]は,カメ ラの周囲に配置されたLEDから近赤外光を発光し, 反射光の強さが物体までの距離にほぼ反比例する ことを利用して,物体の切り出しや大まかな三次元 形状の取得を行っている.本研究ではこの手法を参 考に,デジタルカメラを用いて,可視光を利用した 簡便に一般的な環境下で色情報を得ることができ る距離計測の手法を提案する[5].

2. 距離計測手法

2.1 手法の概要

本手法では、デジタルカメラを使用して同じ対象 をフラッシュを使用した場合と使用しない場合の2 通り撮像し、2枚の画像間での明るさの差を用いて 距離計測を行う.

デジタルカメラで撮像した画像の画素値は,CCD 上の放射照度に比例している[6].放射照度は線形性 が成り立つので,フラッシュを使用して撮像した画 像から得た放射照度と,同じ環境下でフラッシュを 使用せずに撮像した画像から得た放射照度の差を とることによって,フラッシュによる反射光だけの 放射照度値を得ることができる.反射光の強度が物 体との距離の二乗にほぼ比例して弱くなることを 利用することで距離情報を取得することができる. この手法はフラッシュ以外の光源環境を知る必要 がないので,暗室などの特殊な環境を用意する必要 はなく,安価な装置で簡便に距離計測ができるとい う利点がある.

2.2 仮定

本稿で提案する手法では以下の条件を仮定する. (a) 物体表面の反射は拡散反射のみであり,鏡面 反射はしない.

(b) フラッシュとレンズの中心の位置は等しい.

2.3. 距離計算式の導出

物体上のある1点での放射輝度と、その点に対応 する画像上の1点での放射照度との関係を考える.

画像面から距離 f離れた直径 d のレンズを考える (Fig. 1).物体表面上の小領域の面積を ∂ の,対応する 画像上の小領域の面積を ∂ とする.物体上の小領域 からレンズの中心に向かう光線が光軸と角度 α をな し、この光線と表面法線がなす角度が θ であるとする. 物体上の小領域が光軸に沿ってレンズから距離 z の ところにあるとすると、それに対応する画像小領域 の放射照度は次式で与えられる[2].

Fig.1 カメラ座標系

$$E_{image} = L_{object} \frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha \tag{1}$$

ここで、 L_{object} は物体小領域の放射輝度である.双方 向性反射率分布関数 $\rho(\theta_i, \phi_i; \theta_e, \phi_e)$ を導入すると式(1) は、

$$E_{image} = \rho(\theta_i, \phi_i; \theta_e, \phi_e) \cdot E_{object} \frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha \quad (2)$$

となる.ここで、 E_{object} は物体上の放射照度である. 双方向性反射率分布関数とは、ある視線方向(θ_e, ϕ_e) と光の照射方向(θ_i, ϕ_i)に対する表面の反射特性を表 したもの、つまり放射照度に対する放射輝度の比率 を表す関数である.

光源がフラッシュのみの場合を考える.フラッシュの放射強度を I とすると,物体上におけるフラッシュ光による放射照度は,

$$E_{object} = \frac{I\delta\omega}{\delta O}\cos\theta_f \tag{3}$$

となる.ここで、 θ はフラッシュから物体小領域へ 向かう光線と表面放線とがなす角である.また、 $\delta \omega$ はフラッシュから物体上の微小領域を見たときの立 体角で、

$$\delta \omega = \frac{\delta O \cos \theta_f}{\left(z / \cos \alpha_f \right)^2} \tag{4}$$

と表わせる.式(3),(4)を考慮すると式(2)は,

$$E_{image} = \rho(\theta_f, \phi_f; \theta, \phi) \cdot I \frac{1}{z^2} \cos^2 \alpha_f \cos^2 \theta_f \frac{\pi}{4} \left(\frac{d}{f}\right)^2 \cos^4 \alpha$$
(5)

となる.

フラッシュを使用したときの画像上の放射照度を E^{F}_{image} 、フラッシュを使用しなかったときの画像上 の放射照度を E^{NF}_{image} とすると、 $E_{image}=E^{F}_{image} - E^{NF}_{image}$ である.

ここで、フラッシュの位置はレンズの中心と同じ 位置であると仮定しているので、 $\alpha_{\overline{r}} \alpha$ 、 $\theta_{\overline{r}} \theta$ とおけ る.また、物体表面が反射率rの拡散反射面であると 仮定すると、双方向性反射率分布関数は、

$$\rho(\theta, \phi; \theta, \phi) = \frac{r}{\pi} \cos \theta \tag{6}$$

であるので,式(5)より,

$$z = \frac{1}{2} \sqrt{\frac{Ir}{E_{image}^{F} - E_{image}^{NF}}} \frac{d}{f} \cos^{3} \alpha \cos^{\frac{3}{2}} \theta$$
(7)

を得る.式(7)より,距離はフラッシュの放射強度お よび対象物体の反射率の平方根に比例し,照度の差 分の平方根に反比例することがわかる.先に述べた ように,CCD 面の放射照度と画像の輝度値は比例す るので,2 枚の画像の差分から距離を求めることがで きることになる.

しかし, *θ*が未知数であるので,この段階では距離 を求めることはできない.

2.4 面法線の推定

式(7)において,視線方向と物体表面の法線とがな す角のが未知数であるので,これを推定する必要があ る.

Fig. 2 に示す場合を考える. CCD上の第i画素と第 *i*+1 画素に写っている物体上の点をそれぞれ P_i , P_{i+1} と し、レンズ中心からCCD上の第i画素と第i+1 画素へ のベクトルをそれぞれ α_i , α_{i+1} , 画像の差分により得 たフラッシュのみによる放射照度をそれぞれ E_i ,

Fig. 2 模式図

 E_{i+1} とする.また、物体の表面は局所的に平面である と仮定し、法線ベクトルをnとする.ここで、ベクト ル $\overrightarrow{P_iP_{i+1}}$ は、

$$\overrightarrow{P_iP_{i+1}} = \overrightarrow{OP_{i+1}} - \overrightarrow{OP_i} = z_{i+1}\boldsymbol{a}_{i+1} - z_i\boldsymbol{a}_i$$
(8)

と表せる. $\overrightarrow{P_iP_{i+1}}$ と**n** は垂直なので,

$$\mathbf{n} \cdot (z_{i+1}\boldsymbol{\alpha}_{i+1} - z_i\boldsymbol{\alpha}_i) = z_{i+1}\mathbf{n} \cdot \boldsymbol{\alpha}_{i+1} - z_i\mathbf{n} \cdot \boldsymbol{\alpha}_i = 0$$
(9)

である.これより,

$$\frac{z_{i+1}}{z_i} \frac{\mathbf{n} \cdot \boldsymbol{\alpha}_{i+1}}{\mathbf{n} \cdot \boldsymbol{\alpha}_i} = 1$$
(10)

を得る. また,

$$\mathbf{n} \cdot \boldsymbol{\alpha}_i = |\mathbf{n}| |\boldsymbol{\alpha}_i| \cos \theta_i \tag{11}$$

と表せることから,

$$\frac{\mathbf{n} \cdot \boldsymbol{\alpha}_{i+1}}{\mathbf{n} \cdot \boldsymbol{\alpha}_{i}} = \frac{|\boldsymbol{\alpha}_{i+1}|}{|\boldsymbol{\alpha}_{i}|} \frac{\cos \theta_{i+1}}{\cos \theta_{i}}$$
(12)

を得る.式(12)を式(10)へ代入すると,

$$\frac{z_{i+1}}{z_i} \frac{|\boldsymbol{\alpha}_{i+1}|}{|\boldsymbol{\alpha}_i|} \frac{\cos\theta_{i+1}}{\cos\theta_i} = 1$$
(13)

となる. 式(7)より,

$$\frac{z_{i+1}}{z_i} = \left(\frac{E_i}{E_{i+1}} \frac{\cos^6 \alpha_{i+1}}{\cos^6 \alpha_i} \frac{\cos^3 \theta_{i+1}}{\cos^3 \theta_i}\right)^{\frac{1}{2}}$$
(14)

を得るので、式(13)と式(14)を連立すると、

$$\frac{z_{i+1}}{z_i} = \left(\frac{E_i}{E_{i+1}} \frac{\cos^6 \alpha_{i+1}}{\cos^6 \alpha_i} \frac{|\boldsymbol{a}_i|^3}{|\boldsymbol{a}_{i+1}|^3}\right)^{\frac{1}{5}}$$
(15)

となる. 右辺を a と置くと,

$$z_{i+1} = a z_i \tag{16}$$

となり,
$$\overrightarrow{P_iP_{i+1}}$$
は a を用いて,

$$\overrightarrow{P_i P_{i+1}} = z_i \begin{pmatrix} a \tan \alpha_{i+1} - \tan \alpha_i \\ a - 1 \end{pmatrix}$$
(17)

と表せる.カメラの視野角が 180[deg]を超えない限 りziは負であり,通常は 180[deg]未満であるので,式 (17)から既知の情報のみで物体表面に平行なベクトルの向きが得られることになる.

この方法を用い,注目する画素の四近傍でそれぞ れ面に平行なベクトルを求め,それらの外積から三 次元での面法線を求めることにより,*θ*の推定が可能 になる.

3. 実験

以上で提案した手法を用いて,実際に撮像した画像を使用して距離計測実験を行った.2.4節で述べた面法線を推定する計算は各画素でそれぞれ行った.

実画像にはノイズが含まれるため、隣接画素との 照度比で面法線を推定する本手法では距離計算に大 きな影響を及ぼす.そこで,差分で得られたデータ に対して平滑化処理を行った.

実験に使用したカメラは Nikon D70, フラッシュは カメラに内蔵のもの(ガイドナンバー約 15[ISO200・

m]), レンズは Nikon AF-S DX Zoom-Nikkor 18-70mm f/3.5-4.5G IF ED である.

また、今回の実験では簡単のため、フラッシュは 点光源であり、その放射強度は全ての方向で等しい、 という仮定を 2.2 節で述べた仮定に加えた.

3.1 実験1

対象物として, Fig. 3 に示すホワイトスクリーン (SANYO KA-LCV-101KZ)を約 1.55[m]離れた位置で 正面から撮像した.ホワイトスクリーンは反射特性 が均等な拡散反射に近く, 2.2 節で述べた仮定(b)に対 して適当な対象である.

フラッシュありでの画素値と、その画像とフラッ シュなしでの画素値との差分を Fig. 4 左に、結果を Fig. 5 に示す. ばらつきはあるものの、ほぼ平面上に 分布していることがわかる. ばらつきの主な原因は ノイズが完全に除去できていないことであると考え られる. 中心付近にやや突出した部分があるが、こ れは鏡面反射成分の影響によるものと考えられる.

Fig.3 ホワイトスクリーン

3.2 実験2

同じ対象物を,正面から 30[deg]傾いた位置から撮像した.中心との距離は実験1と同じである.

反射光は、物体表面法線と視線とのなす角のコサ インに比例して弱くなる.よって、面の傾きを考慮 しないと正しい計算結果は得られない.本手法での 傾きを考慮する部分の有効性を検証するため、この 実験を行った.

フラッシュありでの画素値と、その画像とフラッ シュなしでの画素値との差分を Fig. 4 右に、結果を Fig. 6 に示す.実験1の結果よりもややばらつきが大 きくなっているが、中心の距離はほぼ同じであり、 30[deg]傾いた平面に近い位置に分布していることが わかる.実験1よりもばらつきが大きくなった原因 としては、隣接画素との照度比で面法線を推定して いるために、同じノイズ強度でも面の傾きが大きい ときにノイズの影響が強くなってしまうことが考え られる.

4. 結論

本稿では、大がかりな装置や特殊な環境を必要と しない、フラッシュを使用したデジタルカメラによ る簡便な距離計測手法を提案した.実験によりこの 手法の有効性を示した.

本稿では、画像中の物体の法線ベクトルが一定で、 かつ物体表面がすべて同じ反射率である場合を扱っ たが、今後は異なる反射率を持つ面が混在する画像 に適用できるようにする必要がある。

参考文献

- [1] 井口征士, 佐藤宏介:三次元画像計測, 昭晃堂, 1990.
- [2] B. K. P. Hom 著, NTT ヒューマンインタフェー ス研究所プロジェクト RVT 訳: ロボットビジョ ン,朝倉書店, 1993.
- [3] 藤村恒太,大上靖弘,寺内智哉,江見哲一,福 崎勤: "ディジタルカメラ画像から簡単に3次 元データを生成するソフトウェア技術", SANYO TECHNICAL REVIEW, Vol. 35, No. 1, Jun. 2003.
- [4] 沼崎俊一,土井美和子: "手振りで気持ちを伝えるインタフェース~モーションプロセッサ~", IPSJ Magazine, Vol.41, No.2, Feb. 2000.
- [5] 小川直哉,梅田和昇: "フラッシュを使用した デジタルカメラでの距離計測の一手法",動的 画像処理実利用化ワークショップ 2005 講演論 文集,pp. 82-85, 2005.
- [6] 標準化委員会:"デジタルカメラの感度規定", CIPA DC-004-2004, カメラ映像機器工業会.

左:0[deg] 右:30[deg]

Fig. 6 計算結果 2(30[deg])