
Development of a Simulator of Environment and
Measurement for Autonomous Mobile Robots

Considering Camera Characteristics

Kazunori Asanuma1, Kazunori Umeda1, Ryuichi Ueda2, and Tamio Arai2

1 Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
{asanuma, umeda}@sensor.mech.chuo-u.ac.jp
http://www.mech.chuo-u.ac.jp/umedalab/

2 The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
{ueda, arai}@prince.pe.u-tokyo.ac.jp
http://www.arai.pe.u-tokyo.ac.jp/

Abstract. In this paper, a simulator of environment and measurement
that considers camera characteristics is developed mainly for RoboCup
four legged robot league. The simulator introduces server/client system,
and realizes separation of each robot’s information, introduction of each
robot’s difference and distribution of processes. For producing virtual
images, the simulator utilizes OpenGL and considers the effects of blur
by lens aberration and so on, random noise on each pixel, lens distortion
and delayed exposure for each line of CMOS device. Some experiments
show that the simulator imitates the real environment well, and is a
useful tool for developing algorithms effectively for real robots.

Key words:Simulator of Environment and Measurement, Camera Model,
Modeling of Measurement Error, Server/Client System

1 Introduction

So as to develop robots or a multiple robots’ systems that work in real, dy-
namic environment, it is necessary to assume a lot of conditions and test the
robots or robots’ systems for the conditions. However, this requires much cost
by much trials and errors. To reduce the cost, simulation is effective. Many kinds
of simulators have been developed for various applications, e.g., teleoperation[2],
autonomous mobile robot[3]. It is also the case in RoboCup and simulators have
been developed [4, 5]. They simulate kinematics or motions, but sensing is not
well considered that suffers noises, distortions, etc.

In this paper, we develop a simulator for multiple mobile robots that have
the ability to produce images by considering explicitly the characteristics of a
camera, and the ability to simulate the real robots’ behaviors. The concrete
target as the multiple mobile robots system is the RoboCup four legged robot
league.

In developing the simulator, we focus on the following features:

– programs for real robots can be applied directly,
– multiple robots can share environment and interact with each other,
– images obtained by a real robot can be imitated well.

2 Outline of the Simulator

In the field, a lot of information are obtained from the ball, the landmarks, the
robots, etc., and multiple tasks are executed simultaneously in real robots. The
simulator is designed so that it produces virtual images precisely for each robot
with arbitrary position and orientation, and that the following tasks can be
executed virtually in the simulator. Consequently, debugging of programs and
verification of algorithms can be effectively performed virtually on PC. Fig.1
illustrates the relation between a real robot and the simulator.

(a) Real Robot (b) Simulator

Image Input

Color Detection

Object Detection

Self-Localization

Action Strategy

Image Input

Color Detection

Object Detection

Self-Localization

Action Strategy

Renew Joint Angle

Renew

Camera Position

Renew Environment

Make Image

Fig. 1. Tasks in image input cycle of a real robot and of the simulator

Objects in the virtual field that is produced on the simulator are modeled
with precise size by using OpenGL[7](see Fig.2.). Each robot on the virtual field
produces images by evaluating its camera coordinate that is calculated using the
position and orientation of the robot, the elbow angles of its legs, the pan/tilt
angle of its neck(see Fig.3(a).). By considering the characteristics of its CMOS
camera, the simulator can produce images that imitate real images precisely(see
Fig.3(b).). Each robot applies a method of color detection for the synthesized
images, and detects 8 kinds of color regions(see Fig.3(c).).

3 Server/Client System

So as to realize the requirement that multiple robots can share environment and
interact with each other, server/client system is introduced in the simulator;
tasks are performed cooperatively by two kinds of processes, i.e., a server process

Fig. 2. Virtual field

(a) Original OpenGL image (b) With CMOS filter

(c) Color extraction for (b)

Fig. 3. Virtual image

and client processes. The server process administrates the environment of the
field totally, and the client processes execute robots’ behaviors. By introducing
the server/client system,

1. separation of each robot’s information,
2. realization of each robot’s difference,
3. distribution of processes

are realized. By 1., the condition is satisfied that each robot cannot acquire other
robots’ information explicitly without communication. By 2., robots’ behaviors
with different algorithms for each team can be implemented and a new algorithm
can be easily tested. By 3., each process can be run on a different PC by using
TCP/IP protocols, and calculation cost for each PC can be reduced.

Fig. 4 illustrates the structure of the server/client system. Production of
a virtual image, analysis of the image, active sensing and simulation of some
behavior strategy are performed by clients. Each client program is assigned to
the control of each robot. By executing multiple client programs simultaneously
and connecting them to the same server, multiple robots in the same field are
realized. At the same time, the server administrates the environment on the
field; it administrates the connected clients and the ball, recognizes the collisions,
etc. Each client can recognize the information on the field through the server.
Information is communicated at a constant period among the server and the
clients so as to adjust the field environment.

4 Consideration of Camera Characteristics

The images are generated by OpenGL assuming an ideal pinhole camera(see
Fig.3(a)), and thus they are different from real images obtained by the CMOS
camera on the real robots. Therefore, we consider the camera characteristics of
the CMOS camera so as to produce images that closely simulate the real images.
The parameters of the ERS-2100’s camera are as follows.

– CMOS 1/6inch, 178 × 144 pixels
– Lens F2.0, f=2.18mm
– Angle of View H:57.6deg, V:47.8deg
– White Balance: 4300K
– Frame Rate: 25fps
– Shatter Speed: 1/200sec

We consider the following characteristics.

– blur by lens aberration, focusing error, etc.
– random noise on each pixel
– lens distortion
– delayed exposure for each line of CMOS device

Client 2

Client 3

Client 4 Client 5

Client 6

Client 7

Monitor

Client 1 Client 8

TCP/IP

Server

Fig. 4. Server/client system

4.1 Blur by Lens Aberration, etc.

Blur is generated by various lens aberration, focusing error, etc. Supposing the
blur of each pixel is approximated by Gaussian distribution, we apply Gaus-
sian filter to the virtual image. For an image f(u, v), two dimensional Gaussian
distribution function

G(u, v) =
1

2πσ2
exp(−u2 + v2

2σ
) (1)

is convoluted, and the blurred image is obtained. In the simulator, the area of
convolution is set to 5 × 5, and σ is set to 1.

Fig.5(a) shows an image by the real camera for the ball with the distance
of 1m. Fig.5(b) is the virtual image generated by the simulator on the same
condition for Fig.5(a). Fig.5(c),(d) are the close-ups of Fig.5(a),(b). Fig.5(e) is
the image generated from Fig.5(d) by applying Gaussian filter. It is shown that
Fig.5(e) is closer to the real image, and additionally, aliasing that appears in
Fig.5(d) is not observed.

4.2 Random Noise on Each Pixel

Random noise is inevitable, and it is remarkable in principle for CMOS device.
The simulator adds the random noise on each pixel with the variance that is eval-
uated a priori by experiments. Fig.5(f) shows the image generated from Fig.5(d)
by adding random noise. Additionally, we consider limb darkening generated by
the lens as shown in Fig.5(g). Parameters of limb darkening can be evaluated a
priori by experiments.

4.3 Lens Distortion

Images are distorted by lens distortion. As the model of lens distortion, we apply
the equation approximating a radial distortion:

[
ũ
ṽ

]
=

2
1 +

√
1 − 4κ(u2 + v2)

[
u
v

]
(2)

to the virtual image, where (u, v) is the coordinates on an original image and
(ũ, ṽ) is that on the distorted image. κ in eq.(2) can be evaluated by camera
calibration. Fig.6 shows an example of the simulation of lens distortion.

4.4 Construction of Virtual CMOS Filter

In order to make the calculation time shorter, we integrate the multiple processes
for camera characteristics into one filter, called CMOS filter. By using this filter,
the cycle time of producing virtual images became shorter from 208[msec] to
112[msec] by PentiumIII 600MHz. Fig.7 shows the final image by applying the
CMOS filter.

(a) Real image

(c) (a)× 4

(b) Original OpenGL image

(d) (b) × 4

(e) Gaussian filter (f) Element noise (g) Limb darkening

Fig. 5. Consideration of camera characteristics

(a) Real Image (b) Virtual Image

without Distortion

(c) Virtual Image

with Distortion

Fig. 6. Lens distortion

Fig. 7. CMOS filter: total consideration of camera characteristics

4.5 Delayed Exposure for Each Line

For motions of the robots, two more camera characteristics have to be considered.
One is the motion blur. This is regardless of the kind of the camera, and depends
on the exposure time. The other is specific to CMOS cameras as the ERS-2100’s:
exposure for each line of the CMOS device is asynchronous. There exists about
one frame time delay of the timing of exposure between the first and last line of
a CMOS device as illustrated in Fig.8. For ERS-2100, the phenomenon occurs
especially when it fast rotates its head. Fig.9(a) shows an example for the velocity
of 0.30deg/msec.

Scanning Line

Shatter Speed

5 msec

0
1
2
3

N-1

N

0 1 2 3 N-1 N

Output Signal per frame

Signal Output

Frame Cycle T=32 msec

Accumulation Period

of One Frame

Fig. 8. Line exposure and shutter speed

(a) Real Image (b) Virtual Image

without Exposure Delay

(c) Virtual Image

with Exposure Delay

Fig. 9. Exposure delay and shutter speed

5 Evaluation of the Developed Simulator

In this section, we show some experimental results to verify that the proposed
simulator well imitates the real environment. One experiment is measurement
of the distance to a ball, and the other is self localization, both of which are
essential and important technologies for the robocup games.

5.1 Evaluation for Ball Measurement

The distance to a ball was measured by a real robot and by a robot in the sim-
ulator. The algorithm to measure the distance was the same for both the real
and the virtual robots: distance was measured from the number of pixels of the
ball region, the coordinates of the center of the ball region, edge information,
etc. The ball was set from constant distances from the robot as shown in Fig.10,
and the distance was measured 100 times and the average and the standard
deviation were evaluated for each distance. Fig.11 and Fig.12 show the results
of the average and the standard deviation respectively. In Fig.11, the simulator
measures almost the same distance as the real robot, especially when the cam-
era characteristics are considered. In Fig.12, when the camera characteristics
are not considered, the standard deviations are zero; and when the characteris-
tics are considered, the deviations by the simulator show the same tendency as
that by the real robot. Fig.10 shows color detection for distance measurement
with/without the consideration. When considered, the color detection seems
much more realistic.

Fig. 10. Setting of distance measurement by real robot(upper), virtual robot in the
simulator(lower)

400

800

1200

1600

2000

500 700 900 1100 1300 1500

Ball Distance True Value mm
A

v
er

ag
e

o
f

M
ea

su
re

m
en

t
 m

m

Real Measurement

Simulator with Camera Characteristics
Simulator without Camera Characteristics

Fig. 11. Comparison of ball distance measurement: average

0

20

40

60

80

500 700 900 1100 1300 1500

Ball Distance True Value mm

S
ta

n
d
ar

d
 D

ev
ia

ti
o
n
 o

f
M

ea
su

re
m

en
t

m
m

Real Measurement

Simulator with Camera Characteristics
Simulator without Camera Characteristics

Fig. 12. Comparison of ball distance measurement: standard deviation

Without consideration With consideration

Fig. 13. Color detection for distance measurement by the simulator with/without con-
sidering camera characteristics

5.2 Evaluation for Self-Localization

We have been applying Monte Carlo Localization(MCL) that is a kind of Markov
Localization methods for self localization of real robots[6]. MCL represents po-
sition and orientation of each robot by distributed probabilistic distribution of
a lot of sample points. Experiments were performed at 36 positions and orienta-
tions of a robot for 9 positions (intersection points of x=0, 1000, 1750[mm] and
y=0, 500, 1000[mm]) and 4 orientations (θ = ±45,±135[deg]). Self localization
was performed by rotating the camera for 30[sec]. Table 1 shows the results.

It is shown that the real robot and the simulator obtain similar results for
self localization. However, the errors of the simulator are larger than of the real
robot. The reason is perhaps that in the simulator, production of images and
the cycle of waving head synchronized, and consequently, images had some bias.

Table 1. Comparison of self-localization

(a) Real robot

Mean squared error Max. error Ave. of division width True value in division

x 186 mm 393 mm 580 mm 61%

y 141 mm 375 mm 395 mm 58%

θ 6.5 deg 16 deg 19 deg 67%

xy 233 mm 393 mm / 47%

xyθ / / / 47%

(b) Simulation without camera characteristics

Mean squared error Max. error Ave. of division width True value in division

x 272 mm 731 mm 603 mm 58%

y 218 mm 542 mm 527 mm 61%

θ 9.9 deg 23 deg 39 deg 77%

xy 349 mm 704 mm / 42%

xyθ / / / 42%

(c) Simulation with camera characteristics

Mean squared error Max. error Ave. of division width True value in division

x 291 mm 731 mm 570 mm 55%

y 201 mm 564 mm 426 mm 60%

θ 9.4 deg 26 deg 26 deg 66%

xy 368 mm 807 mm / 45%

xyθ / / / 45%

6 Conclusion

In this paper, we developed a simulator of environment and measurement that
considers camera characteristics. The simulator introduced server/client system,
and realized separation of each robot’s information, introduction of each robot’s

difference and distribution of processes. For producing virtual images, the simu-
lator utilized OpenGL and considered the effects of blur by lens aberration, etc.,
random noise on each pixel, lens distortion and delayed exposure for each line
of CMOS device. Some experiments show that the simulator imitates the real
environment well, and is a useful tool for developing algorithms effectively for
multiple mobile robots.

References

1. Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda, Eiichi Osawa and
Hitoshi Matsubara: “RoboCup: A Challenge Problem for AI and Robotics,” Proc.
of Robot Soccer World Cup I, pp.1-19, 1997.

2. N. Y. Chong, T. Kotoku, K. Ohba: “Development of a Multi-telerobot System for
Remote Collaboration,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems, pp. 1002-1007, 2000.

3. O. Michel: “Webots: Symbiosis Between Virtual and Real Mobile Robots,” Proc. of
ICVW ’98 Paris France, pp.254-263, 1998.

4. T. Rofer: “An Architecture for a National RoboCup Team,” Proc. of Robot Soccer
World Cup VI, pp.388-395, 2002.

5. Mark M. Chang, Gordon F. Wyeth: “ViperRoos 2001,” Proc. of Robot Soccer World
Cup V, pp.607-610, 2001.

6. R. Ueda, T. Fukase, Y. Kobayashi, T. Arai, H. Yuasa and J. Ota: “Uniform Monte
Carlo Localization – Fast and Robust Self-localization Method for Mobile Robots,”
Proc. of ICRA-2002, pp.1353-1358, 2002.

7. J. Neider, T. Davis and M. Woo: OpenGL Proggraming Guide, Addison-Wesley,
1992.

