
 
 

  

Abstract— This paper presents a methodology for the design 
of a real-time neuro-fuzzy controller for the robotic 
rehabilitation of patients with upper-limb dysfunction due to 
neurological diseases. The approach utilizes a fuzzy-logic 
schema to introduce compliance into the human-robot 
interaction, and to allow the emulation of a wide variety of 
therapy techniques. It also allows for the fine-tuning of system 
dynamics using linguistic variables. The rule base for the 
system is trained using a fuzzy clustering algorithm and applied 
to experimental data gathered during traditional therapy 
sessions. The compliance rule base is combined with a hybrid 
neuro-fuzzy compensator to automatically tune the dynamics of 
the system on-line. The control algorithm is implemented as a 
platform-independent solution to facilitate the rehabilitation of 
patients using multiple manipulator configurations. 
Preliminary experimentation has shown promising results 
indicating that the proposed methodology can accurately 
replicate the desired compliance profiles in real-time. 

I. INTRODUCTION 
HE human-in-the-loop nature of rehabilitation robotics 
requires a fundamentally non-traditional approach to the 

design and development of manipulator control systems, 
which emphasizes the interaction between the patient and the 
manipulator system. This human-centred design 
methodology is an ideally suitable ground for the application 
of soft-computing approaches including fuzzy c-means 
(FCM) clustering and neuro-fuzzy control. To this end, a 
real-time compliance control strategy has been developed to 
evaluate the effectiveness of a neuro-fuzzy approach to the 
challenges inherent to rehabilitation therapy. 

The primary design challenge in rehabilitation robotics is 
the replication of the complex movements associated with 
traditional physiotherapy, which involve resistive and/or 
assistive forces applied at specific times. Traditionally, a 
hybrid force-position controller would be required to regulate 
the interaction forces while precisely monitoring and 
controlling the position and velocity of the limb movement. 
Since during the rehabilitation therapy the patient is also a 
part of the dynamic system, traditional control schemes are 
difficult to develop based on the system model. Current 
research efforts in the field of rehabilitation robotics have, 
therefore, centred on the development of systems that offer 
goal-oriented movement tasks coupled with the therapist 

 
Manuscript received June 30, 2010.  
P. Martin is a graduate of the Space Mechatronics Group with the 

University of Toronto Institute for Aerospace Studies, Toronto, Ontario 
M3H 5T6 Canada (e-mail: pmartin@utias.utoronto.ca).  

M. R. Emami (corresponding author) is the director of the Space 
Mechatronics group and the coordinator of the Aerospace Undergraduate 
Laboratories at the University of Toronto Institute for Aerospace Studies, 
Toronto, Ontario M3H 5T6 Canada (e-mail: emami@utias.utoronto.ca). 

prescribed levels of assistance and compliance. 
An approach that has been proposed by some researchers 

to overcome the difficulties associated with the application of 
traditional force control to rehabilitation robotics is the use of 
fuzzy logic [1,2,3]. Fuzzy logic control has the advantage of 
being able to provide rule-based force control while 
compensating for nonlinearity and parameter uncertainty. 
This feature enables the system designers to create a model of 
the prescribed interaction between the robot and the patient 
based on the therapist’s qualitative description of the desired 
behaviour of the coupled system. However, the traditional 
approach to the generation of the rule base for fuzzy 
rehabilitation systems creates a fundamental reliance on the 
expert knowledge of the therapy professionals. Given the 
complexity of traditional therapy tasks, this dependency on 
an accurate understanding of the dynamics of the interaction 
has meant that the fuzzy based rehabilitation systems are 
normally only able to perform very simple trajectory profiles. 

One such controller was developed using a conventional 
fuzzy logic system with triangular membership functions for 
position control [1]. For force control, the work uses a 
conventional linear PI controller with a fuzzy rule base acting 
as PI tuner. This approach was used to compensate for the 
nonlinear dynamics of the robot and the human subject. To 
provide trajectory tracking for a wearable pneumatic 
rehabilitation device, a fuzzy PID controller was proposed by 
Wu et al. [3]. The fuzzy system performed better than a 
conventional PID controller during trials with a healthy 
patient. 

The application of neuro-fuzzy control to rehabilitation 
robotics has been very limited. Hybrid neuro-fuzzy systems 
combine fuzzy rules with neural networks to enable the fuzzy 
system to tune its performance [4]. To compensate for non-
linear system elements, the 3 d.o.f exoskeletal system 
proposed by Kiguchi et al. made use of a neuro-fuzzy schema 
[5]. The system was used to overcome design challenges 
inherent in EMG signal acquisition. In order to adapt the 
system parameters responsible for the human-robot 
interaction to different patients, an adaptive impedance 
controller was proposed by Xu and Song [6]. The system 
uses a dynamic fuzzy neural-network to alter the impedance 
parameters of the system on-line based on an estimation of 
the impaired limb’s impedance. Preliminary simulations have 
shown that the system is more effective than traditional 
impedance control. 

The chief consideration for the design of robotic 
rehabilitation control systems is the dynamics of the 
interaction between the robotic system and the patient. The 
performance of therapy robots is defined not by the ability of 
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the system to accurately follow specific trajectories, but by 
their ability to provide the desired “feel” at the interaction 
point [7]. This paper presents a neuro-fuzzy compliance 
controller that emphasizes flexibility, adaptability, and 
usability in an attempt to appeal directly to the needs of 
therapists. The methodology proposed in this paper was 
developed as a platform-independent, model-based solution. 
A unique approach to the generation of behavioral rules is 
utilized which uses the human-patient interaction as a basis 
for the control behaviour in order to achieve an inherently 
human-centred design. This approach was taken to give the 
therapist the flexibility to perform a wide range of both 
established and emerging therapy techniques, using a variety 
of manipulator systems. 

II. NEURO-FUZZY COMPLIANCE CONTROL 
In order to create a controller that is able to emulate the 

behaviour of a therapist as closely as possible, our approach 
utilizes a fuzzy-logic based inference system. Using a fuzzy 
approach enables the system to emulate the humanistic 
dynamics of traditional therapy more effectively than 
traditional control approaches by making use of model-based 
variable compliance. In addition, each unique exercise and 
each patient can take advantage of a unique rule base to 
better emulate each specific treatment scenario. Therefore, it 
should be emphasized that the system is not meant to replace 
the therapist, but to enable the autonomous treatment of 
patients at home or in the clinic. 

A. Data Gathering 
There are several considerations that must be paid due 

diligence during the data gathering stage including: 1) the 
need for a representative dataset, 2) the specification of 
appropriate protocols for handling exceptional circumstances, 
and 3) verification that there are no conflicting relationships 
contained in the dataset.  

The need for a representative dataset is a fundamental 
requirement for all fuzzy modeling based controllers. The 
nature of fuzzy logic enables a fuzzy controller to infer 
appropriate system responses to undefined input values by 
extrapolating based on the behaviour contained within the 
system model. It is for this reason that fuzzy logic-based 
inference systems are widely applied in situations where a 
humanistic or reasoned approach is appropriate. However, if 
the universe of discourse defined by the fuzzy input space is 
too limited in its scope with respect to the input variables 
passed to the system during its application, the system will 
not respond properly when the input lies outside of the realm 
of knowledge. Therefore, in the case of knowledge based 
systems such as the fuzzy trajectory generator proposed in 
this paper, a dataset that contains a reasonably complete input 
space is essential to ensure that the system is able to react to 
all potential training scenarios in a controlled manner.  

The specification of protocols for the proper compensation 
during exceptional circumstances involves the inclusion of 
situations within the experimental data that specify the proper 

system reactions during abnormal conditions. Given the 
interactive nature of the neuro-fuzzy training system, it is 
imperative that the system respond gracefully under 
exceptional circumstances, such as a large patient jerk or 
spasm to ensure the safety of the patient at all times. During 
the therapist training sessions used for the generation of the 
fuzzy rules, therefore, proper responses to unanticipated 
patient reactions should be recorded.  

The confirmation that the therapist dataset does not 
contain conflicting behaviour is required to ensure that the 
system response is consistent and well defined. For this 
reason, it is important to specify a clear and consistent 
protocol for the therapy action taken during the data 
gathering stage. For instance, during the training sessions, 
the therapist must consistently lead the patient along the 
trajectory while providing consistent assistance. If the 
patient is allowed to lead, or “push” the therapist along the 
trajectory, then the interaction will result in two conflicting 
compliant conditions for the same measured forces. This is 
also the case if the therapist has allowed the patient to 
deviate laterally from the specified trajectory, and the 
resistive force applied by the patient is reduced without the 
therapist leading the patient back to the proper trajectory. In 
this case, both low and high force conditions will be 
measured corresponding to the same deviation from the 
desired trajectory. If the behaviour expressed by the dataset 
used to generate the compliance model is clear and 
consistent, then the ability of the fuzzy system to replicate 
the prescribed interaction when working with the patient is 
greatly increased. 

B. Compliant Trajectory Generator 
The purpose of the trajectory generator module is to 

generate the end-effector positions necessary to follow the 
position trajectory specified by the exercise, while providing 
a force-dependent level of compliance to the human-patient 
interaction. The fuzzy rule-base, thus, expresses the dynamics 
of the relationship between changes in the interaction forces 
measured at the end-effector and the resultant compliant 
position increment.  

In order to provide a basis for the initial selection of the 
number of clusters c and exponent m, an iterative heuristic 
algorithm is used [8]. Once the appropriate initial conditions 
are obtained, the output space of the experimental dataset is 
clustered using the FCM optimization algorithm. Trapezoidal 
membership functions are then fitted to the output space 
based on the generated cluster centres. The output 
membership functions are then projected onto the input space 
using the fuzzy line clustering technique, to generate the 
appropriate input membership functions. To complete the 
fuzzy inference system, the Takagi–Sugeno–Kang (TSK) 
inference method is integrated into the system to determine 
the corresponding crisp outputs for each input set. This 
unique approach to the generation of fuzzy rules for 
compliant trajectory generation was proposed in [9] and is 
shown in Fig. 1 (Block A). 
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When the current forces between the patient and the 
robot, 𝐹, are fed back from the force transducer, they are 
compared with a corresponding desired interaction force, 𝐹ௗ, 
as specified by the therapist. The resultant force error, 𝐹 = (𝐹ௗ − 𝐹), is then passed into the fuzzy trajectory 
generator module along with the desired trajectory position 
for the exercise in the task space. In order to reduce the 
influence of high-frequency noise inherent in the signal from 
the force sensor, a moving average of three consecutive 
measurements is used as a simple low-pass filter.  

To reduce the complexity of the fuzzy inference system 
necessary to generate each compliant increment vector, three 
separate rule bases are used for each component of the 
consequent change in the end-effector position. The force 
errors across all axes are input into the fuzzy consequent 
layer in order to allow the fuzzy rules to evaluate the state of 
the system including any coupling between the forces acting 
along all axes. The control action of the fuzzy system for 
each rule base can be expressed linguistically as: 

IF 𝐹௫ is 𝐵ଵଵ AND 𝐹௬ is 𝐵ଶଵ AND 𝐹௭ is 𝐵ଷଵ THEN 𝜕pos is 𝐷ଵ 
ALSO 
… 
ALSO 
IF 𝐹௫ is 𝐵ଵ AND 𝐹௬ is 𝐵ଶ AND 𝐹௭ is 𝐵ଷ THEN 𝜕pos is 𝐷 

(1)

where n is the number of rules, 𝐵(𝑖 = 1, … , 𝑛, 𝑗 = 1,2,3) 
and 𝐷(𝑘 = 1, … , 𝑛)  are fuzzy sets over the input and output 
spaces, 𝐹 = ൛𝐹௫, 𝐹௬, 𝐹௭ൟ, and 𝜕𝑝𝑜𝑠 is either 𝜕𝑥, 𝜕𝑦 or 𝜕𝑧 
depending on the rule base. The resultant trajectory point is 
then added to the desired trajectory position and the 
additional compensator position to generate the total position 
command to be passed to the manipulator servo controller. 
The overall trajectory generation scheme is illustrated in Fig. 
1 (Block B). 

C. Hybrid Neuro-fuzzy Compensator 
The fuzzy rule base representing the compliance behaviour 

of the therapy action is structured as an outer-loop module to 
enable the trajectory generator to remain kinematically 
independent. This original schema addresses both the need 
for specialized human-centred systems designed for 
rehabilitation and the high cost of custom robotic 
manipulators. By enabling the proposed system to be applied 
to multiple manipulator configurations, the trajectory 
generator can be packaged as a self-contained software 
module to facilitate automated rehabilitation therapy using 
both custom and industrial manipulators with various degrees 
of freedom. However, in order to ensure that the system is 
able to replicate the behaviour dictated by the fuzzy rule base 
regardless of the dynamics of the manipulator, an additional 
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Figure 1: Neuro-fuzzy Compliance Control Methodology 
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control module was necessary. Several fuzzy impedance 
compensators have been proposed in the literature for 
industrial tasks to compensate for situations where the 
environmental dynamics are unknown and for parameter 
uncertainty [10,11]. To maintain a computationally-efficient 
system, a position-based fuzzy compensator was 
implemented based on the approach taken in [11]. This 
module provides an additional position correction to the 
trajectory based on the measured force error. 

The task of the fuzzy compensator module is to generate 
additional position increments based on the interaction force 
measured at the end-effector in order to compensate for the 
difference in dynamics between the manipulator and 
therapist. Three separate inference systems are utilized, one 
for each position increment component, to allow the dynamic 
components to be independently tuned. Each module is 
implemented as a MISO fuzzy system utilizing TSK 
interpolation. 

The antecedent inputs for each system are force and force 
increment along each respective axis. A rule base with n×m 
rules is used where n and m are the number of input 
membership functions for each input, respectively. To 
simplify the tuning of the resultant systems, constant 
consequents are used for each rule. 

For example, the rules for the x-axis component of the 
fuzzy compensator can be expressed linguistically as: 

IF 𝐹௫ is 𝐵ଵ AND 𝛿𝐹௫ is 𝐷ଵ THEN 𝜕𝑥 is 𝑐ଵ 
ALSO 
… 
ALSO 
IF 𝐹௫ is 𝐵 AND 𝛿𝐹௫ is 𝐷 THEN 𝜕𝑥 is 𝑐 

(2)

where n is the number of rules, 𝐵 (𝑖 = 1, … , 𝑛) and 𝐷 are 
the ith antecedent fuzzy sets for the three inputs, respectively, 
and 𝑐 is the consequent constant of the ith rule. 

Given the complex nature of the interaction between the 
patient and the manipulator system, a learning algorithm was 
integrated into the trajectory generator module in the final 
stage of development to form the hybrid neuro-fuzzy system 
shown in Fig. 1 (block B). The neuro-fuzzy algorithm, 
shown in Fig. 1 (block C), enables the system to 
autonomously tune the consequent constants in real-time to 
improve the performance of the system, and to compensate 
for changes in the manipulator configuration.  

In the first stage of the neuro-fuzzy scheme, similar to the 
traditional fuzzy control methodology, the two crisp input 
values are assigned to the appropriate fuzzy sets and 
corresponding linguistic variables based on the trapezoidal 
antecedent membership functions. In the second stage the 
activation degree of each rule is calculated. The error signal 
between the model inferred value  𝑃ௗ, and the corresponding 
training value, �̂�ௗ′  is then evaluated and integrated into an 
objective function E which expresses the mean quadratic 
error of the system. The training value based on the 
experimental data is generated using a lookup table and a 
linear search algorithm of O(n) time. If the value is not 
found in the table, then the three closest values based on the 

input vector are averaged to generate an appropriate 
reference. The error is evaluated as: 𝐸 = 12 ൣ 𝑃ௗ − �̂�ௗ′ ൧ଶ

 (3) 

where the model inferred value, 𝑃ௗ, is the overall 
compliant position generated by the trajectory generator 
system, and �̂�ௗ′  is the corresponding training value. The 
inferred response to the input vector 𝑋 is consequently 
calculated as: 𝑃ௗ(𝑋′) = ∑ ൫∏ 𝐵൫𝑥൯ୀଵ ൯𝜔ୀଵ∑ ൫∏ 𝐵൫𝑥൯ୀଵ ൯ୀଵ +  𝛿𝑝 + 𝑝ௗ (4) 

where 𝜔 is the weighted consequent rule conclusion, 𝛿𝑝 
is the output from the compliance rule base, 𝑝ௗ is the desired 
trajectory point, and 𝐵(𝑖 = 1, … , 𝑛, 𝑗 = 1,2,3) are the fuzzy 
sets over the input space. The algorithm utilizes the gradient-
decent method to adjust the weight of the rule conclusions as 
a function of the objective function as:  𝜔(𝑡 + 1) = 𝜔(𝑡) − 𝛼 𝜕𝐸𝜕𝜔 (5) 

where 𝛼 is the learning rate. By calculating the variation 
of the objective function E, in relation to the variation that 
occurred in 𝜔 in the anterior instant, the adjustment of each 
conclusion value can be expressed as: 𝜔(𝑡 + 1) = 𝜔(𝑡) − 𝛼 ൫𝑃ௗ − �̂�ௗ′ ൯𝑑∑ (𝑑)ୀଵ  (6) 

where 𝑑 is the contribution of rule i to the final neuro-
fuzzy inference. The adjustment to the weight of the rule 
conclusion can thus be interpreted as being proportional to 
the error between the model inferred value and the 
experimental value, weighted by the contribution of the rule 
to the overall crisp output.  

III. SYSTEM IMPLEMENTATION 
In the first stage of the implementation of the trajectory 

generator, a number of experimental datasets were recorded 
during mock therapy sessions with a (healthy) patient. The 
data was gathered in order to generate a number of 
behaviour models using the fuzzy clustering procedure 
outlined in Section II. The position and force information 
was recorded using a six d.o.f ATI Mini45 force transducer, 
in conjunction with an NDI Optotrack® optical motion 
tracking system. A custom handle mechanism was designed 
to be mounted on the top of the force transducer interface, to 
allow the therapist to train the patient in the same orientation 
as the manipulator end-effector. Various two-dimensional 
circular and linear trajectories were performed to generate a 
representative body of data for different therapy actions. 
Three dimensional position profiles were not tested due to 
restrictions inherent to the manipulator, though the system is 
applicable as a 3D trajectory generator. The resultant 
position profiles were then compared with the ideal 
minimum-force desired trajectories to yield the 
corresponding force and position deviation data for 
clustering.  
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IV. EXPERIMENTAL RESULTS 

A. Preliminary Off-line Implementation 
The objective for the application of a learning algorithm to 

the fuzzy compensator module was to improve the 
performance of the compliance control system without 
detrimentally affecting its computational efficiency. In order 
to first determine if the integration of the fuzzy compensator 
into a hybrid neuro-fuzzy framework would successfully 
improve the accuracy of the overall trajectory generator, the 
compliance rule base was tested with a manually tuned 
compensator. The neuro-fuzzy algorithm was then applied to 
the recorded compliant trajectories as an offline simulation. 
The output from the compliance rule base for each recorded 
end-effector force set was combined with the generated 
neuro-fuzzy compensator output to generate an 
approximation of how the system would have performed had 
the learning algorithm been present.  

A comparison of the compliant positions generated by: a) 
the fuzzy compliance rule base, b) the compliance rule base 
combined with the fuzzy compensator to form the fuzzy 
compliance controller, and c) the neuro-fuzzy compliance 
controller is shown in Fig. 2a and 2b when applied to a linear 
trajectory along the manipulator x-axis. The results show that 
the error between the generated compliant position and the 
desired compliant position can be reduced by modifying the 
compensator rule base using a hybrid neural-network. 
Without the neuro-fuzzy schema, the manually-tuned fuzzy 
compensator merely adds an additional offset to the output 
from the compliance rule base as a function of the measured 
force.  

B. Real-time Implementation 
To demonstrate the feasibility of a real-time 

implementation of the proposed hybrid neuro-fuzzy schema, 
the neuro-fuzzy trajectory generator was implemented as a 
real-time module on an Epson E2L853 manipulator.  

The performance of the neuro-fuzzy compliance controller 
while leading the patient along an x-axis trajectory is 
evaluated in Fig. 3a and 3b. The root-mean-squared (RMS) 
error of the (x,y) components were (14.47, 10.04) for the 
fuzzy rule base, (25.11, 30.86) with the manually tuned 
compensator, and (3.81, 5.08) for the neuro-fuzzy controller. 
The results indicate the ability of the neuro-fuzzy algorithm 
to better replicate the human-robot interaction, shown in the 
preliminary testing. According to the results shown in Fig. 
3a, the manually-tuned fuzzy compensator actually had a 
detrimental effect on the performance of the system, in some 
cases driving the magnitude of the compliant position far 
higher than the desired position. To determine the influence 
of multiple compliant trends for the same force profiles, or 
“branches”, the experiment was repeated with a refined 
reference dataset.  The additional results are shown in Fig. 4a 
and 4b. Though the refined reference dataset did not 
influence the performance of the y-axis component of the 
system, the performance of the x-axis component improved 
slightly. It should be noted that the additional “branches” 

were not removed from the compliance rule base, which 
likely influenced the deviation in the compliance trend 
between 5N and 10N in Fig. 4a. The compliance rule base 
was not generated using single branch datasets to retain more 
robust control behaviour. The RMS error of the (x, y) 
components were (25.67, 15.33) for the fuzzy rule base, 
whereas for the neuro-fuzzy controller the errors were (5.44, 
9.32). These results indicate that the neuro-fuzzy system is 
able to adapt a generic rule-base to a specific implementation 
or experiment. The specialization of the system using a 
general purpose rule base highlights the further potential for 
development of a library of generic fuzzy rule bases for a 
variety of diseases or levels of impairment. 

V. CONCLUSION 
A hybrid neuro-fuzzy compliance control scheme was 

proposed as a proper human-centred solution for 
rehabilitation robotics. The experimental results indicate that 
a robotic manipulator can replicate therapist behaviour by 
providing the prescribed level of compliance during a 
therapy action, though more experimentation is needed. The 
introduction of learning into the trajectory generator 
significantly improved the performance of the proposed 
system. The successful generation of several models of the 
human-patient interaction while performing a variety of 
exercises has confirmed the potential for a library of custom 
therapy rule bases. A modular approach to the rule base 
specification might provide a means to quickly and 
effectively alter the system parameters to appeal to a wide 
variety of exercises and levels of patient motor impairment. 
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Figure 2: a) Learning Algorithm applied to: X-axis Rule Base, b) Y-axis Rule Base for a Linear X-axis Trajectory 

  
Figure 3: a) X-axis Comparative Results, b) Y-axis Comparative Results using Multiple X-axis Linear Trajectories 

 
Figure 4: a) X-axis Comparative Results, b) Y-axis Comparative Results using a Single X-axis Linear Trajectory
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