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Abstract

We propose the use of 3D (2D+time) Shape Context

to recognize the spatial and temporal details inherent

in human actions. We represent an action in a video se-

quence by a 3D point cloud extracted by sampling 2D

silhouettes over time. A non-uniform sampling method

is introduced that gives preference to fast moving body

parts using a Euclidean 3D Distance Transform. Ac-

tions are then classified by matching the extracted point

clouds. Our proposed approach is based on a global

matching and does not require specific training to learn

the model. We test the approach thoroughly on two pub-

licly available datasets and compare to several state-of-

the-art methods. The achieved classification accuracy

is on par with or superior to the best results reported to

date.

1 Introduction

Recognition of actions in video sequences is a chal-

lenging research goal for computer vision. Efforts in ac-

tion recognition building on the success in static object

recognition have shown some success recently. How-

ever, action recognition requires analysis of the tempo-

ral order of the action. A direct application of object

recognition over a set of consecutive video frames as-

sumes significant local structure over a small temporal

window. This results in a limited discriminative power

for capturing the variations in human actions. We pro-

pose a novel method that uses the entire temporal infor-

mation of action in a video sequence.

Our primary contributions are

(1) the use of the 3D Shape Context on point-

sampled Space-Time Shapes to classify ac-

tions. We extend the 2D Shape Context pro-

posed by Belongie et al. [1] to 3D by includ-

ing the temporal dimension. The proposed

extension also improves over [11] by using a

novel discretization. And

Figure 1: Response function R for the actions bend and skip

from the Weizmann dataset. Red values indicate fast, blue

values slow moving parts. (in color)

(2) we introduce a motion adaptive sampling

technique by using the Euclidean 3D Dis-

tance Transform of Space-Time Shapes, that

better models the time-variations.

In addition to the above technical contributions, we

have attempted a detailed and thorough evaluation of

our approach. It shows significant validity when tested

on the Weizmann Dataset [2] and the KTH Dataset [18].

The obtained classification accuracy is on par with or

superior to the best results reported to date. However,

in contrast to other authors [4, 8, 15, 19] our proposed

method does not employ any dataset specific learning

stage.

Recent approaches for action recognition can be sep-

arated by their use of temporal information. Limited

temporal window approaches rely on local features to

capture local temporal information. Laptev and Lin-

deberg’s [12] proposed scale-adapted space-time inter-

est points, which are scale-adapted Harris features [13]

extended along the temporal dimension. Using Sup-

port Vector Machines for classification, Schuldt et al.

[18] utilized these features for action recognition. Dol-

lar et al. [4] proposed separable linear filters in order

to extend the feature response to constant and fluent

motions. Niebles et al. [15] classified actions by ap-

plying these features to unsupervised learning in form

of pLSA. Niebles and Fei-Fei [14] build a hierarchical
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model for action recognition using Dollar et al.’s sepa-

rable linear filters [4] as well as static edge features rep-

resented by the 2D Shape Context [1]. Most recently,

Jhuang et al. [8] have presented a biologically inspired

approach for action recognition. Among others, local

temporal information is captured by space-time gradi-

ents, optical flow or complex features collected over 7

consecutive video frames. Their approach uses a learn-

ing stage to extract so called prototype features.

Global temporal information approaches rely on

global features or mapping of frames that capture the

whole time span of the action. Bobick and Davis [3]

have represented an action by a motion energy image

(MEI) and a motion history image (MHI) to capture

where and how the motion happened. Some years be-

fore, Polana and Nelson [17] have described an action

as one feature vector of summed optical flow magni-

tudes in a spatiotemporal grid. Efros et al. [5] have

introduced the spatio-temporal motion descriptor con-

sisting of 4 motion channels (optical flow separated by

dimension and sign). The temporal order of the motion

is established by taking the maximum frame by frame

correlation accumulated over a temporal window. Re-

cently, Wang et al. [19] have used a bag-of-words ap-

proach to represent an action sequence as a sequence of

prototype frames and classify it by the use of a Semi-

Latent Dirichlet Allocation (SLDA) model. The ap-

proach closest to ours was proposed by Blank et al. [2].

They obtain global features by integrating local mea-

sures (stickness and plateness) of Space-Time Shapes

that are generated from silhouetted video data.

2 Representing Actions

We base our approach on the observation that the

silhouette contains sufficient information to accurately

identify the human action. We justify this assumption

by noting that the object’s pose in an image can be

reliably determined by focusing on its edge represen-

tation [16] once the object’s identity is known. Fur-

thermore, silhouettes have advantages over local fea-

tures, which become unstable in case of low-resolution

or noisy, blurred video.

We extract the human’s silhouette of each action se-

quence by applying Kim et al.’s [10] real-time back-

ground substraction method. We require a known back-

ground, however it is not limited to static cameras.

In order to accommodate for the different speeds with

which the actions are carried out, we discard frames

which temporal variation (computed by a XOR mask)

is less than the median variation of the sequence. We

found that this technique performs as good as the usual

sliding window approach.

Each action sequence is represented by a 3D point

cloud obtained by uniformly sampling the silhouettes.

To increase robustness w.r.t. segmentation errors we

prior smooth the silhouettes along their spatial and tem-

poral dimension.

2.1 3D-Shape Context

Our 3D-Shape Context is an extension of the 2D

Shape Context proposed by Belongie et al. [1] by in-

cluding the temporal dimension. It differs from Ko-

rtgen et al.’s [11] 3D Shape Context, which does not

extend an important property of the 2D shape context

to 3D: Bins of equal distance from the origin should

have the same size. Otherwise implicitly more weight is

given to the smaller bins. Although Huang and Trivedi

[7] propose a 3D Shape Context for Gesture Analysis,

their Shape Context is a global descriptor capturing the

whole shape and differs significantly in its idea from our

locally evaluated 3D shape context.

To obtain a correspondence between the 3D point

clouds of two action sequences we associate a local fea-

ture descriptor with each point. Lets assume action se-

quence P is represented by N points pi. For each pi we

compute the N − 1 difference vectors di,j to its neigh-

bors pj . This rich representation is converted to a his-

togram hi collected over the discretization of difference

vectors w.r.t. angles and magnitude.

Similar to [1] the magnitude R is logarithmical dis-

cretized to make the descriptor more sensitive to nearby

points. A uniform discretization for the longitude angle

φ ∈ [0, 2π] is used. However the transformation from

2D to 3D demands a non-uniform discretization for the

latitude angle θ ∈ [−π
2 , π

2 ] so that each bin covers the

same surface area. That means we want to determine

θi, i = 1...N so that

∫ 2π

φ=0

∫ θi

θ=0

r2 cos θ dθdφ =
i

N
2πr, (1)

with the right hand side being the ith fraction of the

surface area of the upper hemisphere. It follows that

θi = arcsin(
i

N
).

Since the difference vectors di,j are invariant under

translation the obtained 3D Shape Context has the same

property. Furthermore the histograms are very sparse,

in average only 9.6% of a histogram’s bins are non-zero,

leading to a high discrimination.

As the histogram bins are independent normally dis-

tributed random variables it is appropriate to define the

matching costs ci,j of two histograms hi and hj as

the χ2 test statistic, similar to [1]. The optimal corre-

spondence between each point pi of action sequence P



and each point qj of action sequence Q is a bijective

mapping π that minimizes the total matching costs of

the corresponding histograms π = argminσ

∑

i ci,σ(i).

This problem poses a linear assignment problem that

can be solved efficiently by the method described in [9].

2.2 3D-Distance Transform

We propose a new motion-adaptive sampling method

of the silhouettes that favors fast moving body parts to

better discriminate actions that only differ by small dy-

namic parts, like running and jumping (see Fig. 3). We

introduce the 3D Distance Transform of Space Time

Shapes to compute these fast moving parts. For each

voxel in the Space-Time volume we compute the clos-

est distance to the boundary. We adopt the 2D Distance

Transform described in [6] and apply it to 3D.

Let B be the set of all boundary points and G the

discrete grid of the Space-Time volume. For each g ∈
G the squared distance to the boundary B is given by

the Euclidean Distance Transform

DB(g) = min
b∈B

‖ b− g ‖2 . (2)

As shown in [6] the above Eq. 2 can be transformed

so that the minimum is taken over the whole grid G by

introducing the indicator function

I(g) =

{

0 if g ∈ B

∞ else
. (3)

In our case G has three dimensions and the Distance

Transform in Eq. 2 can then be expressed as follows:

DB[I](g)

= min
hx,y∈G

(‖ (g − h)x,y ‖2 + min
ht∈G

(gt − ht)
2 + I(h))

= min
hx,y∈G

(‖ (g − h)x,y ‖2 +DB[I](g)|x,y)

= min
hx∈G

((gx − hx)2 + min
hy∈G

(gy − hy)
2 + Dt)

with Dt := DB[I](g)|x,y

= min
hx∈G

((gx − hx)2 + DB[Dt](g)|x)

= DB[Dy](g) with Dy := DB[Dt](g)|x. (4)

The above Eq. 4 states, that the 3D Distance Trans-

form can be computed by applying the one-dimensional

version three successive times. The overall complexity

is limited by O(|G|).
Fast moving parts exhibit the property that their dis-

tance to the boundary changes rapidly over time. There-

fore we use the squared derivative of the 3D Distance

Transform w.r.t. time as a measure to identify these

parts. We constrain the response function R to lie in

the interval [0,1]:

R(g) =
log(1 + ∂tDB[I](g))

maxḡ∈G log(1 + ∂tDB[I](ḡ))
. (5)

Figure 2: Uniform and

adaptive sampling for

action running.

To propagate high

response values to the

boundary, R is maximum-

filtered with a spatial

radius of 3 and a tem-

poral radius of 1. Fig.

1 shows an example of

the response function R

at the boundary for 2 ac-

tions from the Weizmann

dataset.

To prefer fast moving

body parts at the sampling

stage, a smaller sample window is used for points with

a higher response value. Fig. 2 shows the difference

between both sampling techniques for a single frame.

3 Experimental Setup and Results

We classify actions by a leave-one-out method. The

test sequence and all sequences showing the same ac-

tion performed by the same actor are removed from the

dataset. The test sequence is compared to the remain-

ing sequences in the dataset based on the total matching

costs.

Datasets: We tested our approach on two publicly

available datasets:

Weizmann Dataset [2]: The dataset consists of 81 low

resolution videos (180x144, 25 fps) showing 9 persons

performing 9 different actions. There is another action

”skip” that is usually not included in the dataset and

makes classification more difficult. However we evalu-

ate our approach also on this ”extended” dataset.

KTH Dataset [18]: The dataset consists of 2391 low

resolution videos (160x120, 25fps) showing six types of

human actions each performed 4 times by 25 persons.

Results: In order to obtain a baseline we compare to

Bobick and Davis’ [3] Temporal Templates. As fea-

ture descriptor for each action sequence we compute

the seven Hu moments (see appendix of [3]) for both

the MHI and the MEI. We apply several machine learn-

ing algorithms to these descriptors: Bobick and Davis’

Nearest Neighbor approach, Neural Network with prior

PCA and Support Vector Machines(SVM) with RBF



Author W. w/o skip W. w/ skip KTH

Our method 96.39 94.6 93.52

Blank et al. [2] 98.77 * *

Jhuang et al. [8] 97.0 * 96.0

Wang et al. [19] * * 92.43

Dollar et al. [4] * * 88.2

Niebles et al. [15] * * 81.5

Niebles et al. [14] 72.8 * *

SVM 90.36 84.9 79

Neural Net. 83.13 72.04 79.67

Nearest N. 74.7 72.04 74

Table 1: Left column shows normal, middle extended Weiz-

mann dataset. Right column shows results for S1 subset. [18]

tests on all sets while [19, 15] might test on all four subsets

although example figures only show the S1 subset. * denotes

that no results are available.

kernels. In case of the KTH dataset, similar to [8, 18]

we perform 5 random splits of the data set into 9 test and

16 database persons. This is only done for comparison;

the 16 other person are not used for a learning stage.

Table 1 shows the results for both datasets. Our

achieved classification accuracy is on par with other ef-

forts. Our proposed method scales well to the extended

Weizmann dataset compared to the baseline.

We explored the advantage of the motion adaptive

sampling on the Weizmann dataset. Classification ac-

curacy increased from 92.77% to 96.39%. On the ex-

tended dataset, the impact is more significant. Accuracy

increased from 86.02% to 94.6%. The right confusion

matrix in Fig. 3 shows confusion clusters. Only ac-

tions that exhibit spatial similarity but differ along the

temporal dimension are confused e.g. walk and side or

jump, run and skip. By using motion adaptive sampling

these actions can be very well discriminated as the left

confusion matrix in Fig. 3 shows.

Running time of our system: Preprocessing consists

of computing the local 3D Shape Contexts (4.4s) and

the 3D Distance Transform (30 ms) for each action se-

quence. Classification on the Weizmann dataset takes

28.4s in average.
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