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Abstract: One way of handling Human-Robot Interaction (HRI) is based on the concept, that the robot 
acts like an animal companion to human. According to this paradigm the Robot should not be molded to 
mimic the human being, and form human-to-human like communication, but to follow the existing 
biological examples and form inter-species interaction. The 20.000 year old human-dog relationship is a 
good example for this paradigm of the HRI, as interaction of different species. One good reason of this 
approach in HRI is the lack of the “uncanny valley” effect i.e. increasing similarity of robots to humans 
will actually increase the chances that humans refuse interaction (will be frightened). In this paper, for 
ethologically inspired HRI model implementation, a fuzzy model structure built upon the framework of 
low computational demand Fuzzy Rule Interpolation (FRI) methods and fuzzy automaton is suggested. 
The application of FRI methods fits well the conceptually “spare rule-based” structure of the existing 
descriptive verbal ethological models. (In case of the descriptive verbal ethological models, the 
“completeness” of the rule-base is not required). The main benefit of the FRI method adaptation in 
ethological model implementation is the fact, that it has a simple rule-based knowledge representation 
format. Because of this, even after numerical optimization of the model, the rules are still “human 
readable”, and helps the formal validation of the model by the ethological experts. On the other side due 
to the FRI base, the model has still low computational demand and fits directly the requirements of the 
embedded implementations. For demonstrating the applicability of the proposed structure, some 
components of a human-dog interaction FRI model, which also suitable for HRI, will be briefly 
introduced in this paper. 

Keywords: Fuzzy Rule Interpolation, Fuzzy Automaton, Behaviour-based Control, Human-Robot 
Interaction. 

 

1. INTRODUCTION 

In recent years there has been an increased interest in the 
development of Human-Robot Interaction (HRI). Researchers 
have assumed that HRI could be enhanced if these intelligent 
systems were able to express some pattern of sociocognitive 
and socioemotional behaviour (e.g. Dautenhahn 2007). Such 
approach needed an interaction among various scientific 
disciplines including psychology, cognitive science, social 
sciences, artificial intelligence, computer science and 
robotics. The main goal has been to find ways in which 
humans can interact with these systems in a “natural” way. 
Recently HRI has become very user oriented, that is, the 
performance of the robot is evaluated from the user’s 
perspective. This view also reinforces arguments that robots 
do not only need to display certain emotional and cognitive 
skills but also showing features of individuality. Generally 

however, most socially interactive robots are not able to 
support long-term interaction with humans, and the interest 
shown toward them wears out rapidly. 

2. Challenges in HRI 

The design of socially interactive robots has faced many 
challenges. Despite major advances there are still many 
obstacles to be solved in order to achieve a natural-like 
interaction between robots and humans. 

The “uncanny valley” effect: Mori (Mori, 1970) assumed that 
the increasing similarity of robots to humans will actually 
increase the chances that humans refuse interaction (will be 
frightened from) very human-like agents. Although many 
take this effect for granted only little actual research was 
devoted to this issue. Many argue that once an agent passes 
certain level of similarity, as it is the case in the most recent 
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visual characters in computer graphics, people will treat them 
just as people (Potal, 2008). However, in the case of 3D 
robots, the answer is presently less clear, as up do date 
technology is very crude in reproducing natural-like 
behaviour, emotions and verbal interaction. Thus for robotics 
the uncanny valley effect will present a continuing challenge 
in the near future. 

In spite of the huge advances in robotics current socially 
interactive systems fail both with regard to motor and 
cognitive capacities, and in most cases can interact only in a 
very limited way with the human partner. We see this as a 
major discrepancy that is not easy to solve because there is a 
big gap between presently available technologies (hardware 
and software) and the desire for achieving human-like 
cognitive and motor capacities. As a consequence recent 
socially interactive robots have only a restricted appeal to 
humans, and after losing the effect of novelty the interactions 
break down rapidly. 

The planning and construction of biologically or 
psychologically inspired robots depends crucially of the 
current understanding of human motor and mental processes. 
However, these are one of the most complex phenomena of 
life! Thus it is certainly possible that human mental models 
of abilities like “intention”, “human memory” etc., which 
serve at present as the underlying concepts for control 
socially interactive robots, will be proved to be faulty. 

Because of the goal of mimicking a human, socially 
interactive robots do not utilise more general human abilities 
that have evolved as general skills for social interaction. 
Further, the lack of evolutionary approach in conceptualizing 
the design of such robots hinders further development, and 
reinforces that the only goal in robotics should be the produce 
“as human-like as possible” agents. 

3. Ethologically Inspired HRI Model 

In order to overcome some of the challenges presented above 
ethologically inspired HRI models can be applied. The 
concept of ethologically inspired HRI models allows the 
study of individual interactions between animals and animals 
and humans. If one defines robots as mechanical or electronic 
agents that extend human capacities then the dog (which has 
been domesticated by humans) represents the first “biological 
robot” because some time after domestication dogs were 
utilized as an aid in hunting, animal husbandry, warfare, 
protection, transport etc (Miklósi, 2007). The long-term (for 
cc 20.000 years) and successful human-dog interaction shows 
that humans have the ability to develop social interaction 
with very different agents. The human-dog relationship rests 
critically on our ability to produce and understand various 
forms of communicative cues that are emitted in an inter-
specific relationship in which the two members’ signalling 
behaviour overlaps only to certain extent. Human behaviour 
evolution has selected for increased ability to form social 
contact with any creatures which originates in the very social 
nature of nursing (parental) behaviour in humans which is 
unique in the Primates. Humans also show a preference to use 
social relationship for joint action in cooperative settings. 
Finally, humans have the mental capacities (and the 

preference) to attribute certain human-like mental capacities 
to other agents (even to non-living things) which also 
facilitates the interaction between them. 

It follows that social robots do not have to mirror exactly 
human social behaviour (including language etc) but should 
be able to produce social behaviours that provide a minimal 
set of actions on which human-robot cooperation can be 
achieved. Such basic models of robots could be “improved” 
with time making the HRI interaction more complex.  

4. FRI in HRI Model 

In ethological modeling, mass of expert knowledge exists in 
the form of expert’s rules. Most of them are descriptive 
verbal ethological models. The knowledge representation of 
verbal expert’s rules can be very simply translated to the 
structure of fuzzy rules, transforming the initially verbal 
ethological models to a fuzzy model.  

In case of the descriptive verbal ethological models, the 
“completeness” of the rule-base is not required (thanks to the 
descriptive manner, of the model), which makes 
implementation difficulties in classical fuzzy rule based 
systems, and classical fuzzy reasoning methods (e.g. the 
Zadeh-Mamdani-Larsen Compositional Rule of Inference 
(CRI) (Zadeh, 1973) (Mamdani, 1975) (Larsen, 1980) or the 
Takagi - Sugeno fuzzy inference (Sugeno, 1985) (Takagi and 
Sugeno, 1985)). Another problem of the complete rule base is 
the space complexity. The size of a complete rule base grows 
exponentially with the number of the rule antecedent 
dimensions. A model having more than 7-8 input dimensions 
is practically unimplementable as a complete rule base. 
However in the descriptive verbal ethological models the 10-
20 input variables are common. Classical fuzzy reasoning 
methods are assuming the completeness of the fuzzy rule 
base. If there are some rules missing i.e. the rule base is 
“sparse”, observations may exist which hit no rule in the rule 
base and therefore no conclusion can be obtained. One way 
of handling the “fuzzy dot” knowledge representation in case 
of sparse fuzzy rule bases is the application of the Fuzzy Rule 
Interpolation (FRI) methods, where the derivable rules are 
deliberately missing. Since FRI methods can provide 
reasonable (interpolated) conclusions even if none of the 
existing rules fires under the current observation. From the 
beginning of 1990s numerous FRI methods have been 
proposed (Wong, et. al., 2006).  

5. The “FIVE” FRI 

An application oriented aspect of the fuzzy rule interpolation 
emerges in the concept of “FIVE”. The fuzzy reasoning 
method “FIVE” (Fuzzy Interpolation based on Vague 
Environment, originally introduced in (Kovács, 1996), 
(Kovács and Kóczy 1997a, 1997b) and extended in (Kovács, 
2005)) was developed to fit the speed requirements of direct 
fuzzy control, where the conclusions of the fuzzy controller 
are applied directly as control actions in a real-time system.  

The main idea of the FIVE is based on the fact that most of 
the control applications serves crisp observations and requires 
crisp conclusions from the controller. Adopting the idea of 
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the vague environment (VE) (Klawonn, 1994), FIVE can 
handle the antecedent and consequent fuzzy partitions of the 
fuzzy rule base by scaling functions (Kovács and Kóczy 
1997b) and therefore turn the fuzzy interpolation to crisp 
interpolation. 

The idea of a VE is based on the similarity (in other words: 
indistinguishability) of the considered elements. In VE the 
fuzzy membership function )(xAµ  is indicating level of 
similarity of x to a specific element a that is a representative 
or prototypical element of the fuzzy set )(xAµ , or, 
equivalently, as the degree to which x is indistinguishable 
from a (Kovács and Kóczy 1997b). Therefore the α-cuts of 
the fuzzy set )(xAµ  are the sets which contain the elements 
that are (1−α)-indistinguishable from a. Two values in a VE 
are ε-distinguishable if their distance is greater than ε. The 
distances in a VE are weighted distances. The weighting 
factor or function is called scaling function (factor) (Kovács 
and Kóczy 1997b). If VE of a fuzzy partition (the scaling 
function or at least the approximate scaling function (Kovács, 
1996), (Kovács and Kóczy 1997b)) exists, the member sets of 
the fuzzy partition can be characterized by points in that VE 
(see e.g. scaling function s on fig. 1). Therefore any crisp 
interpolation, extrapolation, or regression method can be 
adapted very simply for FRI (Kovács, 1996), (Kovács and 
Kóczy 1997b). Because of its simple multidimensional 
applicability, in FIVE the Shepard operator based 
interpolation (first introduced in (Shepard, 1968)) is adapted 
(see e.g. fig. 1).  

 

Fig.1: Interpolation of two fuzzy rules (Ri: Ai→Bi), by the 
Shepard operator based FIVE, and for comparison the min-
max CRI with COG defuzzification. 

In this case if the fuzzy rules Rk has the following form: 

If x1=Ak,1 And x2=Ak,2 And … And xm=Ak,m  Then y=Bk 

The FIVE interpolation can be expressed by the following 
formula:  
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where ( )xy  is the requested one dimensional conclusion, r is 
the number of the fuzzy rules in the rule base R, 0>λ  is a 
parameter of the Shepard operator, b0 is the first element of 
the one dimensional consequence universe (Y: b0≤y, ∀y∈Y), 
and 
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where s
iX  is the ith scaling function of the m dimensional 

antecedent universe, x is the m dimensional crisp observation, 
ak are the cores of the m dimensional fuzzy rule antecedents 
A

k
 and Ys  is the ith scaling function of the one dimensional 

consequent universe, bk are the cores of the one dimensional 
fuzzy rule consequents B

k
.  

An implementation of FIVE as a component of the FRI 
Matlab Toolbox (Johanyák, et.al., 2006) can be downloaded 
from (FRI Toolbox). 

6. FRI based Fuzzy Automaton for HRI 

For implementing ethologically inspired HRI models, in this 
paper the classical behaviour-based control structure is 
suggested. In behaviour-based control systems (a good 
overview can be found in (Pirjanian, P., 1999)), the actual 
behaviour of the system is formed as one of the existing 
behaviours (which fits best the actual situation), or a kind of 
fusion of the known behaviours appeared to be the most 
appropriate to handle the actual situation. This structure has 
two main tasks. The first is a decision, which behaviour is 
needed in an actual situation, and the levels of their 
necessities in case of behaviour fusion. The second is the way 
of the behaviour fusion. The first task can be viewed as an 
actual system state approximation, where the actual system 
state is the set of the necessities of the known behaviours 
needed for handling the actual situation. The second is the 
fusion of the known behaviours based on these necessities.  

In case of the suggested fuzzy behaviour based control 
structures both tasks are solved by FRI systems. If the 
behaviours are also implemented on FRI models, the 
behaviours together with the behaviour fusion modules form 
a hierarchical FRI system. 

The application of FRI methods in direct fuzzy logic control 
systems gives a simplified way for constructing the fuzzy rule 
base. The rule base of a fuzzy interpolation-based model, is 
not necessarily complete, it could contain the most significant 
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fuzzy rules only without risking the chance of having no 
conclusion for some of the observations. In other words, 
during the construction of the fuzzy model, it is enough to 
concentrate on the main actions (the rules which could be 
deduced from the others could be intentionally left out from 
the model). 

7. The Suggested FRI Behaviour-based Structure 

In case of pure FRI based fuzzy behaviour-based control 
structures all the main tasks of the behaviour-based control 
are implemented on FRI models. Such a structure is 
introduced on Fig.2. The three main tasks, the behaviour 
coordination, the behaviour fusion, and the behaviours 
themselves are FRI models.  

For demonstrating the main benefits of the FRI model in 
behaviour-based control, in this paper we concentrate only on 
the (usually) most heuristic part of the structure, on the 
behaviour coordination. The task of behaviour coordination is 
to determine the necessities of the known behaviours needed 
for handling the actual situation. In the suggested behaviour-
based control structure, for this task the finite state fuzzy 
automaton is adapted (Fig.2.) (Kovács, 2000), where the state 
of the finite state fuzzy automaton is the set of the 
suitabilities of the component behaviours. This solution is 
based on the heuristic, that the necessities of the known 
behaviours for handling a given situation can be 
approximated by their suitability. And the suitability of a 
given behaviour in an actual situation can be approximated 
by the similarity of the situation and the prerequisites of the 
behaviour. (Where the prerequisites of the behaviour is the 
description of the situations where the behaviour is 
applicable). In this case instead of determining the necessities 
of the known behaviours, the similarities of the actual 
situation to the prerequisites of all the known behaviours can 
be approximated. 

Thus the first step of the system state approximation is 
determining the similarities of the actual situation to the 
prerequisites of all the known behaviours – applying the 
terminology of fault classification, it is the symptom 
evaluation (see on Fig.2.). The task of symptom evaluation is 
basically a series of similarity checking between an actual 
symptom (observations of the actual situation) and a series of 
known symptoms (the prerequisites – symptom patterns – of 
the behaviour components). These symptom patterns are 
characterising the systems states where the corresponding 
behaviours are valid. Based on these patterns, the evaluation 
of the actual symptom is done by calculating the similarity 
values of the actual symptom (representing the actual 
situation) to all the known symptoms patterns (the 
prerequisites of the known behaviours). There are many 
methods for fuzzy logic symptom evaluation. For example 
fuzzy classification methods e.g. the Fuzzy c-Means fuzzy 
clustering algorithm (Bezdek, 1981) can be adopted, where 
the known symptoms patterns are the cluster centres, and the 
similarities of the actual symptom to them can be fetched 
from the fuzzy partition matrix. On the other hand, having a 
simple situation, the fuzzy logic symptom evaluation could 
be an FRI model too.  

 

Fig.2. The suggested FRI behaviour-based structure. 

One of the main difficulties of the system state approximation 
is the fact, that most cases the symptoms of the prerequisites 
of the known behaviours are strongly dependent on the actual 
behaviour of the system. Each behaviour has its own 
symptom structure. In other words for the proper system state 
approximation, the approximated system state is needed 
itself. A very simple way of solving this difficulty is the 
adaptation of fuzzy automaton. This case the state vector of 
the automaton is the approximated system state, and the state-
transitions are driven by fuzzy reasoning (Fuzzy state-
transition rule base on Fig.2.), as a decision based on the 
previous actual state (the previous iteration step of the 
approximation) and the results of the symptom evaluation. 

For demonstrating the simplicity of defining the rule base for 
the FRI model, a small example will be introduced in the 
followings. 

8. Example 

The example is a tiny fragment of a more complex 
ethological model of an RDog behaving in an unfamiliar 
room in interaction with its owner and an unknown human 
(“Owner” and “Human2” on Fig.3). In the name of “RDog” 
the “R” stands for “Robot” i.e. the dog in question is a Robot. 
The “real” version of the “RDog” is introduced on Fig.5.  

The example behaviour is built upon two component 
behaviours, namely “RDogExploresTheRoom” and 
“RDogGoesToDoor” built separately.  

The “RDogExploresTheRoom” is an exploration dog 
activity, in which the dog “looks around” in an unknown 
environment (see the “ellipsoid” track on Fig.3). The 
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“RDogGoesToDoor” is a simple dog activity, in which the 
dog goes to the door, and than stands (sits) in front of it. 

The example is the definition of the related state-transition 
FRI rules of the fuzzy automaton acts as behaviour 
coordination. 

The states concerned in the example are the following: 

“Missing the owner mood of the RDog” 
(RDogMissTheOwner) and “Anxiety level of the RDog” 
(RDogAnxietyLevel): “hidden” states, which have no direct 
task in controlling any of the above mentioned behaviours, 
but has an importance in the state-transition rule base. 

“Going to the door mood of the RDog” (RDogGoesToDoor) 
and “Room exploration mood of the RDog” 
(RDogExploresTheRoom): states, which have also direct 
task in controlling the corresponding 
“RDogExploresTheRoom” and “RDogGoesToDoor” 
behaviours. 

As a possible rule base structure for the state-transitions of 
the fuzzy automaton, the following is defined (a tiny 
fragment of a more complex rule base): 

State-transition rules related to the missing the owner mood 
(state) of the RDog: 

If OwnerInTheRoom=False Then  
RDogMissTheOwner=Increasing 

If OwnerInTheRoom=True Then  
RDogMissTheOwner=Decreasing 

State-transition rules related to the anxiety level (state) of the 
RDog: 

If OwnerToDogDistance=Small And 
Human2ToDogDistance=High Then  
RDogAnxietyLevel=Decreasing 

If OwnerToDogDistance=High And 

Human2ToDogDistance=Small Then  
RDogAnxietyLevel=Increasing 

State-transition rules related to the going to the door mood 
(state) of the RDog: 

If OwnerInTheRoom=False And  
RDogMissTheOwner=High Then  
RDogGoesToDoor=High 

If OwnerInTheRoom=True Then  
RDogGoesToDoor=Low 

State-transition rules related to the room exploration mood 
(state) of the RDog: 

If RDogAnxietyLevel=Low And  
OwnerStartsGame=False And  
ThePlaceIsUnknown=High Then  
RDogExploresTheRoom=High 

If ThePlaceIsUnknown=Low Then  
RDogExploresTheRoom=Low 

If RDogAnxietyLevel=High Then  
RDogExploresTheRoom=Low 

where the text in Italic are the linguistic terms (fuzzy sets) of 
the FRI rule base. 

Please note that the rule base is sparse. It contains the main 
state-transition FRI rules only. 

A sample run of the example is introduced on Fig.3 and 
Fig.4. At the beginning of the scene, the owner is in the room 
and the Human2 is outside. The place is unknown for the dog 
(“ThePlaceIsUnknown=High” in the rule base). according 
to the above rule base, the dog starts to explore the room. At 
around the step count 17, the owner of the dog left the room, 
than “Human2” enters and stay inside. As an effect of the 
changes (according to the above state-transition rule base), 
the anxiety level of the dog and the “missing the owner” is 
increasing, and as a result, the dog goes and stays at the door, 
where the owner has left the room. See example run tracks on 
Fig.3 and state changing on Fig.4. 

 

Fig.3. Tracks of a sample run. Continuous line for the for the 
dog, dotted for the Owner and dashed for the Human2. 

 

Fig. 4. Some state changes during the sample run introduced 
on Fig.3. 
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Fig. 5. The “real” RDog. 

9. CONCLUSIONS 

The goal of this paper was to suggest a behaviour-based 
structure built from Fuzzy Rule Interpolation (FRI) models 
and FRI automaton for handling Human-Robot Interaction 
(HRI) placed on ethological model basis. The suggested 
structure is simple and could be implemented to be quick 
enough to fit the requirements of direct real-time HRI 
applications. It is an easily built and simply adaptable 
structure for many application areas (see e.g. (Kovács, Sz., 
2002) as an application area in user adaptive emotional and 
information retrieval systems). The implementation of FRI 
reasoning methods in HRI applications simplifies the task of 
fuzzy rule base creation. The FRI rule base is not needed to 
be complete, so it is enough to concentrate on the main 
control actions, or even the rules can be added simply piece 
by piece.  
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