
 

 

  

 

 

 

 

 

Abstract— In this paper, we develop a control of a redundant 

robot manipulator. That has to carry out a trajectory tracking 

in operational space while avoiding an obstacle. For this 

purpose, extended Jacobian method is used. The Self-motion 

vector is introduced at the level of the inverse kinematic 

solution in order to produce the obstacle avoidance (the 

secondary task). Thus, robot avoids obstacles without 

influencing the main task (trajectory tracking). The self-motion 

is computed from the optimization of scalar function depending 

on an anti collision constraint. Finally, this control method has 

leaded to a trajectory tracking in Cartesian space while 

avoiding the obstacle.  

 

I. INTRODUCTION 

obots manipulators are used to achieve repetitive tasks, 

dull works and used even in hostile environment. Their 

ability on repetitivity is necessary for industrial 

applications, but it is even more significant, if this quality is 

preserved even in presence of constraints related to the 

execution of task that may prevent the robot from achieving 

desired task such as obstacles. 

Obstacle’s avoidance problem is often met in industry and 

it forms a geometrical constraint, when several robots are 

placed in close places in order to save space. This means that 

it is necessary to develop control algorithms which consider 

the workspace restriction problems.  

Such difficulties led to the development of new control 

methods where the main task (desired task) and the 

secondary task (obstacle avoidance) are considered at the 

same time. One suitable solution is the use of Kinematic 

redundancy [1]-[9]. 

Beside, robots manipulators kinematically redundant are 

those with a degree of freedom (DOF) n more than the 

necessary degree m to describe position and orientation. 

Redundancy can be classified according to r, the order of 

redundancy, the difference between n and m. It can include 

the intrinsic redundancy (due to the robot structure) or the 
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functional redundancy (due to the exerted task). 

Independently of the redundancy causes, its use is the same 

one: the r additional DOF are used in the resolution of 

inverse kinematics to create an internal motion of the joints 

(self-motion) in order to avoid difficulties which obstruct the 

realization of desired task such as obstacles.  

Avoiding obstacles problems are tackled in optimization 

terms of a scalar function h(.) reflecting the secondary task 

which must be carried out in addition to the main task 

(trajectory tracking in Cartesian space). That means for 

obstacle avoidance, a possibility would be to define a 

function h(.) depending on the Euclidean minimal distances 

between the obstacle and the robot arms[3]. 

This paper is organized as fellows. In section II, the 

position of problem is introduced and a redundant planar 

robot is presented resulting from 560 PUMA robot. The 

latter must carry out a trajectory tracking in Cartesian space 

while avoiding an obstacle. For this purpose, in section III, 

the self-motion is introduced to compute the secondary task 

(obstacle avoidance) without influencing the main task 

(trajectory tracking). This self-motion is deduced from an 

optimization of a scalar function h(.). The section IV 

introduces the method which allows extending the Jacobian 

matrix by the self-motion vector in order to make it square. 

The choice of the scalar function h(.) depending on the anti 

collision constraint and it is given in section V. Finally, in 

section VI, the developed method control is tested in the case 

of this 3 DOF planar robot which realizes a trajectory 

tracking in Cartesian space in presence of an obstacle.  

II. POSITION OF THE PROBLEM 

The robot used derives from PUMA 560 by limiting its 

workspace to the vertical plan. So, the 1θ , 4θ and 6θ joints are 

locked so only the three other joints are free (n=3) [9]. As 

the task, to be realized, is a simple positioning of the 

end-effector in a vertical plan, it requires only two degrees of 

freedom (m=2) and the redundancy degree r of this robot is 

one: r=n-m=1. In this case, the state vector is reduced as 

following: 

[ ] [ ]TT
qqqq 532321 θθθ==                                        (1)   

 

The direct geometrical model (DGM), gives the position (x1, 

x2) of the end-effector in this vertical plan according to the 

joint position (q): 
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  Fig.1. Control Scheme without obstacle avoidance 
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Where a2, a3, d4 and L are geometrical parameters of the 

robot. 

The Direct kinematic model (DKM) gives Joint velocity 

according to Cartesian velocity such as: 

 

qJx && .=
                                                                               (3)  

Where elements of J are given by: 
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The actuator torques vector τ is related to the robot dynamic 

by [9]:   

)q,q(Qq)q(A &&& +=τ                                             (5)      

With 

)q(G)q,q(C)q,q(B)q,q(Q ++= &&&   

Where: 

A: the inertia matrix of the robot  

B: Vectors of the Coriolis forces  

C: Vectors of the centrifugal forces 

G: Vector of the gravitational forces.   

 

The end-effector has to follow a trajectory in Cartesian 

space, which is defined by the half circle of radius R and 

whose centre has the co-ordinates (x10, x20). 

The trajectory can be determined by using an auxiliary 

variable ( )tα  varying according to the bang-bang law. Thus, 

the trajectory is determined as follow: 
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Using, computed torque algorithm to obtain the trajectory 

tracking, the control law is calculated as follows [9]:  

),().(. 1
qqQqJwJA &&& +−= −τ                                               (7) 

).().()( xxKxxKxtw dpdvd −+−+= &&&&    

That can be implemented as schematized on figure1.  

Since the Jacobian J is not square, its inverse J
-1

appearing in 

control law (7) and represented by the J
+ 

term in the control 

scheme (Fig.1), is computed by the pseudo-inverse method. 

So, joint velocities are given by:  

 

xJq &&
+=p  

and 1)..( −+ = TT
JJJJ                                      (8) 

 

The control law (7), with J
-1

=J
+
, is applied in order to make 

the end-effector tracking the trajectory represented by the 

half-circle in a vertical plan (fig.2a). Moreover, it is assumed 

that there exists an object materialized by a circle. At first, 

initial time, the end-effector is assumed at the initial position 

of the trajectory (the top of the half-circle) and it must go 

along the trajectory in direct (the anti-clockwise) direction.  

Results are carried out in the case where the control 

coefficients are set such that: 

[ ]125001250012500diagK v = ;

[ ]125001250012500diagK p =   

The obtained figures (fig.2b and 2c) show that the trajectory 

tracking is carried out with tolerable tracking errors and 

realizable actuator torques. However, according to the figure 

2a, arms 1 and 2 come into the area normally occupied by 

the object and then, product a collision with the object. 

Moreover, the situation is worsened by the fact that some 

arms come to cross the trajectory itself. This means that the 

control law (7) is unreached in a realistic context. 

To overcome those difficulties, one can use a method for 

obstacle avoidance exploiting the robot redundancy. Such as 

developed in the following sections.  

 

KV 

G
e
n
e
ra

ti
o

n
 o

f 
 

T
ra

je
ct

o
ry

 

x

d 

dx&

dx&&

J&

R
o

b
o

t 

q

DGM 

DKM 
x&

pq&&

τ

Q
)

 

-

x

Kp 
-

-

q&

J
+ 

)(qA
)

372



 

 

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
1
(m)

x 2
(m

)

 

 

End-effector position

joint 3

joint 2

joint 1

 
 a)Cartesian trajectory 

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

T
o

3
 (

N
.m

)

Time(s)

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

T
o

2
 (

N
.m

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

T
o

1
 (

N
.m

)

 
    b) Joint torques                           
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c)  Tracking errors 

Fig. 2. Control without obstacle avoidance 

 

I. INTRODUCTION OF THE SELF-MOTION  

It is known that one of methods to improve the dexterity of a 

robot manipulator is to increase its joints number. That 

means, the same pose of the end-effector is realized with 

infinity of joint position possibilities. The desired trajectory 

xd(t), for a redundant robot manipulator, is represented by a 

vector of dimension m required for the main task. The r 

DOF’s robot has in more, can be exploited to achieve a  

constraint (.)h  due to the secondary task. In this way, the 

robot arms will acquire the capacity of reconfiguration 

(internal motion)  without affecting the end-effector’s pose. 

This is obtained by modifying the pq& solution as follows [1-

7, 11, 12]: 

zJJIxJqqq n )(p
++ −+=+= α&&&&                                       (9) 

z  is the matrix (vector for the case r =1) of an arbitrary 

projection in this null space. It can be the gradient projection 

of the scalar function )(qh :       

hz ∇=                                                                            (10) 

II. THE EXTENDED JACOBIAN METHOD 

 

The extended Jacobian method is due to Baillieul [8] and 

it was exploited initially to avoid problems of instability 

encountered in generalized inverse method. The Jacobian of 

the robot is enlarged by the self-motion vectors as follows: 
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Where J(q) is a m×n Jacobian matrix and Jn(q) comprises 

the r×n self-motion matrix. So, the Je(q) extended Jacobian 

becomes n×n square matrix.  

However, the additional term Jn(q) cannot be arbitrary as 

for any mathematical function. Indeed, the obtained n×n 

matrix must be necessary invertible and allows to include a 

secondary task h(.). 

By the use of self-motion vector, the r lines can be added 

in the condition as [7]: 

0)( =∇ qhV
T

i  and  i=1,...,r                                           (12) 

Where [ ]1 rV V V= L is the set of column vectors that 

generate the kernel matrix of J. So that: 

( ( ) . ( ))
( ) ( )

T
T T
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V q h q
J q V h

q

∂ ∇
= ∇ ∇ =

∂
                               (13) 

In this case the control low (7) becomes:  
1. ( . ) ( , )e e eA J w J q Q q qτ −= − +& & &                                    (14) 

With  
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        Fig. 3. Outdistance obstacle planar robot  
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T

adx V h= ∇&  

For a redundancy r=1, 1 ...
T

nV v v=     is a simple 

vector and its elements vi can be computed such as in [10]:   
1

( 1) det( ( ))
i

i iv J q
+= −  and i=(1,n)                             (15) 

 

Where, ( )iJ q  represents the Jacobian J without its ith 

column. 

As r=1, the computation of Ja is simplified such as in [7]: 

( ). ( ( ))
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Where µ  is a vector ant its elements iµ
are determined by: 

1( ). .( . ) .T T T
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J
h J J J V
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and Hu(h(q)) is the hessian matrix given by: 
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Thus, it steel one problem, how one specify the scalar 

function h(.) ? 

III. OBSTACLES AVOIDANCE METHOD 

 

The function h(q)  includes necessarily the effect of the 

constraint due to the obstacle. In the case of obstacle 

avoidance, this returns mainly to determine the distance 

obstacle-robot. 

A. Euclidean distance criteria 

The method is based on Euclidean distances between the 

obstacle center and each of robot arms. One solution is the 

use of projection within the scalar product related to the 

vectors 
1M

r
drawn from the beginning of this moving arm to 

the center of obstacle 
2M

r
the arms itself [3]. This allows to 

determine the Euclidean distances di (i=1,n) between the 

obstacle and the different robot arms. But, it is rather the 

anti-collision constraint Di which is actually used. The 

computation with the anti-collision variables is significant, 

but to supplement the problem formulation it is necessary to 

define a scalar function dependent on these variables Di, 

anti-collision functions. Those latter are often taken in the 

following form: 

0

1
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h q h q P D qρ
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= +∑                                    (18) 

Where h0 is used in order to minimize an energy criterion 

and it is often taken as
1

2

T
q q , the iρ  terms are constant and 

the function P(.) is known as penalty function. 

Generally, this function is represented by: 

1
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This leads to the following scalar function h(q):  
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The gradient of h(q) is given by: 

1

T
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B.  Case of Planar Robot 

When it is a plan workspace, the obstacle can be seen as 

circular such as defined on figure 3.  Their co-ordinates are 

such as: 

1 1 2

T

b bM x x=   
r

                                  

 

The coordinates related to the tip of the first arm are given 

by: 

[ ]2 1 1 1 1.cos( ) .sin( )
T

M OA l q l q= =
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                                (23)  

The following relations are fulfilled: 
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         Fig. 4. Workspace of application  
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By using (24) and (25) in (26), the Euclidean distance d1 is 

given by:  
2 2 2 2
1 1 2 1 1 2 1( .cos .sin )b b b bd x x x q x q= + − +                      (27) 

And thus the anti-collision constraint is then:  
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Where, ds is a safety distance.     

The same procedure is used for D2, with: 

'
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For D3, the vectors 1M
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 and 2M
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 are replaced by 
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So that:  
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             (32) 

Thereafter, the expressions (28), (30) and (32) are 

introduced into the relation (20) of the anti-collision function 

h(q) and its gradient is determined by the relation (22).  

IV. CONTROL OF THE ROBOT WITH   OBSTACLE 

AVOIDANCE 

 

The previous method is used to make the robot avoid the 

obstacle (circle in the bottom of figure 4). While ensuring 

the realization of the tracking trajectory, the half-circle 

representing the desired trajectory shares the plan in 2 zones: 

the concave zone and the convex zone. To prevent the arms 

from coming to cross the trajectory it is enough that they 

evolve in the convex zone (on the left of the trajectory). Such 

difficulty can also be solved as avoidance obstacle. Thus, it 

is assumed that there is a virtual obstacle materialized by a 

circle with the same center than the desired trajectory and of 

the radius R2 = R-ds2 (ds2 is a safety distance). 

The tracking trajectory represented by a half-circle (fig 4), 

is involved by the control law (14). The implementation can 

be realized by the same scheme of the figure 1 in which: 

 -- x , x& , dx , dx& and dx&&   are replaced respectively by ex , 

ex& , dex , dex& and dex&& ;  

-- Jacobian J+ and J&  are replaced respectively by 1
eJ
−  

and eJ& . 

The extended Jacobian Je is calculated according to (11), 

(15) , (16) and (17). 

The scalar function h(q) used in the determination of Ja is 

given by relation (18). Since, this function must incorporates 

both: constraints due to the real obstacle, and the assumed 

obstacle (virtual). So, it is of the form: 
3 3

0

1 1

( ) ( ) 1 . ( 1 ( )) 2 . ( 2 ( ))i i i i

i i

h q h q P D q P D qρ ρ
= =

= + +∑ ∑  

where  (ds1, 1iρ , 1iD ) and (ds2, 2iρ , 2iD )  are related 

respectively to  the real obstacle and  the assumed one. 

Tests are carried out in the same conditions related to the 

trajectory realization given in section II and moreover the 

control coefficients are not changed.  

The parameters of the obstacle avoidance are set as: 

[ ]1 0.02 0.07 0.001diagρ =

[ ]2 0.2 0.1 0.01diagρ =   

The obtained results appear on figure 5. This one shows 

that with this method the obstacle avoidance is realized 

without disturbing the execution of the position tracking 

task. 
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c)  Tracking errors 

Fig.5. Robot Control with obstacle avoidance 

 

 

Indeed, no robot arm comes into the protected zone around 

the obstacle or comes to cross the desired trajectory (arms 

evolve in the left side of the trajectory).  

Moreover, the position tracking errors are around 0.1 mm 

and the joint torques remain within a suitable range. 

V. CONCLUSION 

In this paper, redundancy is applied to solve the problem 

of obstacles avoidance in robot control. Indeed, the r DOF in 

more are exploited to create self-motion which acts to 

optimize a scalar function. This function is defined in order 

to incorporate the anti collision constraints. The self motion 

vectors can be introduced in control by using the extended 

Jacobean method. 

This method is applied in the case of 3DOF planar robot 

resulting from the PUMA 560 robot. The control 

incorporating this procedure is applied in the case where the 

end-effector tracks trajectory in a plane close to an obstacle. 

The obtained results show that this control method allows  

avoiding obstacle while assuring the desired performances of 

trajectory tracking. 
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