

Abstract— In this paper, we develop a control of a redundant

robot manipulator. That has to carry out a trajectory tracking

in operational space while avoiding an obstacle. For this

purpose, extended Jacobian method is used. The Self-motion

vector is introduced at the level of the inverse kinematic

solution in order to produce the obstacle avoidance (the

secondary task). Thus, robot avoids obstacles without

influencing the main task (trajectory tracking). The self-motion

is computed from the optimization of scalar function depending

on an anti collision constraint. Finally, this control method has

leaded to a trajectory tracking in Cartesian space while

avoiding the obstacle.

I. INTRODUCTION

obots manipulators are used to achieve repetitive tasks,

dull works and used even in hostile environment. Their

ability on repetitivity is necessary for industrial

applications, but it is even more significant, if this quality is

preserved even in presence of constraints related to the

execution of task that may prevent the robot from achieving

desired task such as obstacles.

Obstacle’s avoidance problem is often met in industry and

it forms a geometrical constraint, when several robots are

placed in close places in order to save space. This means that

it is necessary to develop control algorithms which consider

the workspace restriction problems.

Such difficulties led to the development of new control

methods where the main task (desired task) and the

secondary task (obstacle avoidance) are considered at the

same time. One suitable solution is the use of Kinematic

redundancy [1]-[9].

Beside, robots manipulators kinematically redundant are

those with a degree of freedom (DOF) n more than the

necessary degree m to describe position and orientation.

Redundancy can be classified according to r, the order of

redundancy, the difference between n and m. It can include

the intrinsic redundancy (due to the robot structure) or the

 M. Benzaoui is with the DGEE, FSI, University M’hamed Bougara,

Boumerdès, Independence avenue 35000 Boumerdès Algeria (e-mail:

benzaouimess@mail.com).

 H. Chekireb, is with Process Control Laboratory,Department of

Electrical Engineering, Polytechnic National School, BP 182, 10 avenue

Hassan Badi, El-Harrach, Algeria (e-mail: chekireb@yahoo.fr).

M. Tadjine is with Process Control Laboratory,Department of Electrical

Engineering, Polytechnic National School, BP 182, 10 avenue Hassan

Badi, El-Harrach, Algeria (e-mail: tadjine@yahoo.fr)

.

functional redundancy (due to the exerted task).

Independently of the redundancy causes, its use is the same

one: the r additional DOF are used in the resolution of

inverse kinematics to create an internal motion of the joints

(self-motion) in order to avoid difficulties which obstruct the

realization of desired task such as obstacles.

Avoiding obstacles problems are tackled in optimization

terms of a scalar function h(.) reflecting the secondary task

which must be carried out in addition to the main task

(trajectory tracking in Cartesian space). That means for

obstacle avoidance, a possibility would be to define a

function h(.) depending on the Euclidean minimal distances

between the obstacle and the robot arms[3].

This paper is organized as fellows. In section II, the

position of problem is introduced and a redundant planar

robot is presented resulting from 560 PUMA robot. The

latter must carry out a trajectory tracking in Cartesian space

while avoiding an obstacle. For this purpose, in section III,

the self-motion is introduced to compute the secondary task

(obstacle avoidance) without influencing the main task

(trajectory tracking). This self-motion is deduced from an

optimization of a scalar function h(.). The section IV

introduces the method which allows extending the Jacobian

matrix by the self-motion vector in order to make it square.

The choice of the scalar function h(.) depending on the anti

collision constraint and it is given in section V. Finally, in

section VI, the developed method control is tested in the case

of this 3 DOF planar robot which realizes a trajectory

tracking in Cartesian space in presence of an obstacle.

II. POSITION OF THE PROBLEM

The robot used derives from PUMA 560 by limiting its

workspace to the vertical plan. So, the 1θ , 4θ and 6θ joints are

locked so only the three other joints are free (n=3) [9]. As

the task, to be realized, is a simple positioning of the

end-effector in a vertical plan, it requires only two degrees of

freedom (m=2) and the redundancy degree r of this robot is

one: r=n-m=1. In this case, the state vector is reduced as

following:

[] []TT
qqqq 532321 θθθ== (1)

The direct geometrical model (DGM), gives the position (x1,

x2) of the end-effector in this vertical plan according to the

joint position (q):

Redundant Robot Manipulator Control with Obstacle Avoidance

Using Extended Jacobian Method

M. BENZAOUI, H. CHEKIREB and M. TADJINE

R

18th Mediterranean Conference on Control & Automation
Congress Palace Hotel, Marrakech, Morocco
June 23-25, 2010

978-1-4244-8092-0/10/$26.00 ©2010 IEEE 371

 Fig.1. Control Scheme without obstacle avoidance

)sin(.

)sin(.)cos(.)cos(.

321

214213121

qqqL

qqdqqaqax

++

+++++= (2.a)

)cos(.

)cos(.)sin(.)sin(.

321

214213122

qqqL

qqdqqaqax

++

++++−−=
 (2.b)

Where a2, a3, d4 and L are geometrical parameters of the

robot.

The Direct kinematic model (DKM) gives Joint velocity

according to Cartesian velocity such as:

qJx && .=
 (3)

Where elements of J are given by:

)cos(.

)cos(.)sin(.)sin(.

321

2142131211

qqqL

qqdqqaqaJ

++

++++−−=

)cos(.)cos(.)sin(. 32121421312 qqqLqqdqqaJ ++++++−=

)qqqcos(.LJ 32113 ++=

)sin(.

)sin(.)cos(.)cos(.

321

2142131221

qqqL

qqdqqaqaJ

++

−+−+−−= (4)

)sin(.)sin(.)cos(. 32121421322 qqqLqqdqqaJ ++−+−+−=

)sin(. 32123 qqqLJ ++−=

The actuator torques vector τ is related to the robot dynamic

by [9]:

)q,q(Qq)q(A &&& +=τ (5)

With

)q(G)q,q(C)q,q(B)q,q(Q ++= &&&

Where:

A: the inertia matrix of the robot

B: Vectors of the Coriolis forces

C: Vectors of the centrifugal forces

G: Vector of the gravitational forces.

The end-effector has to follow a trajectory in Cartesian

space, which is defined by the half circle of radius R and

whose centre has the co-ordinates (x10, x20).

The trajectory can be determined by using an auxiliary

variable ()tα varying according to the bang-bang law. Thus,

the trajectory is determined as follow:

;x+)Rsin(=

;x+)Rcos(=x

0d2

0d1

α

α

x);Rcos(=

);Rsin(-=

2d

1d

αα

αα

&&

&&

x

x
 (6)

);Rsin(-)Rcos(=

);Rcos(-)Rsin(-=

2d

1d

αααα

αααα

&&&&&

&&&&&

x

x

Using, computed torque algorithm to obtain the trajectory

tracking, the control law is calculated as follows [9]:

),().(. 1
qqQqJwJA &&& +−= −τ (7)

).().()(xxKxxKxtw dpdvd −+−+= &&&&

That can be implemented as schematized on figure1.

Since the Jacobian J is not square, its inverse J
-1

appearing in

control law (7) and represented by the J
+

term in the control

scheme (Fig.1), is computed by the pseudo-inverse method.

So, joint velocities are given by:

xJq &&
+=p

and 1)..(−+ = TT
JJJJ (8)

The control law (7), with J
-1

=J
+
, is applied in order to make

the end-effector tracking the trajectory represented by the

half-circle in a vertical plan (fig.2a). Moreover, it is assumed

that there exists an object materialized by a circle. At first,

initial time, the end-effector is assumed at the initial position

of the trajectory (the top of the half-circle) and it must go

along the trajectory in direct (the anti-clockwise) direction.

Results are carried out in the case where the control

coefficients are set such that:

[]125001250012500diagK v = ;

[]125001250012500diagK p =

The obtained figures (fig.2b and 2c) show that the trajectory

tracking is carried out with tolerable tracking errors and

realizable actuator torques. However, according to the figure

2a, arms 1 and 2 come into the area normally occupied by

the object and then, product a collision with the object.

Moreover, the situation is worsened by the fact that some

arms come to cross the trajectory itself. This means that the

control law (7) is unreached in a realistic context.

To overcome those difficulties, one can use a method for

obstacle avoidance exploiting the robot redundancy. Such as

developed in the following sections.

KV

G
e
n
e
ra

ti
o

n
 o

f

T
ra

je
ct

o
ry

x

d

dx&

dx&&

J&

R
o

b
o

t

q

DGM

DKM
x&

pq&&

τ

Q
)

-

x

Kp
-

-

q&

J
+

)(qA
)

372

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
1
(m)

x 2
(m

)

End-effector position

joint 3

joint 2

joint 1

 a)Cartesian trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

T
o

3
 (

N
.m

)

Time(s)

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

T
o

2
 (

N
.m

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

T
o

1
 (

N
.m

)

 b) Joint torques

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10
x 10

-4

time(s)

e
rr

e
u

r
X

1
(m

)

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4
x 10

-4

time(s)

e
rr

e
u

r
X

2
(m

)

c) Tracking errors

Fig. 2. Control without obstacle avoidance

I. INTRODUCTION OF THE SELF-MOTION

It is known that one of methods to improve the dexterity of a

robot manipulator is to increase its joints number. That

means, the same pose of the end-effector is realized with

infinity of joint position possibilities. The desired trajectory

xd(t), for a redundant robot manipulator, is represented by a

vector of dimension m required for the main task. The r

DOF’s robot has in more, can be exploited to achieve a

constraint (.)h due to the secondary task. In this way, the

robot arms will acquire the capacity of reconfiguration

(internal motion) without affecting the end-effector’s pose.

This is obtained by modifying the pq& solution as follows [1-

7, 11, 12]:

zJJIxJqqq n)(p
++ −+=+= α&&&& (9)

z is the matrix (vector for the case r =1) of an arbitrary

projection in this null space. It can be the gradient projection

of the scalar function)(qh :

hz ∇= (10)

II. THE EXTENDED JACOBIAN METHOD

The extended Jacobian method is due to Baillieul [8] and

it was exploited initially to avoid problems of instability

encountered in generalized inverse method. The Jacobian of

the robot is enlarged by the self-motion vectors as follows:

 qJq

J

J

x

x

x

qqJx

qqJx

e

aa

e

aa

&&

&

&

&

&&

&&

..

).(

).(

=

−−−=

−−−=⇒

=

−−−−−

=
 (11)

Where J(q) is a m×n Jacobian matrix and Jn(q) comprises

the r×n self-motion matrix. So, the Je(q) extended Jacobian

becomes n×n square matrix.

However, the additional term Jn(q) cannot be arbitrary as

for any mathematical function. Indeed, the obtained n×n

matrix must be necessary invertible and allows to include a

secondary task h(.).

By the use of self-motion vector, the r lines can be added

in the condition as [7]:

0)(=∇ qhV
T

i and i=1,...,r (12)

Where []1 rV V V= L is the set of column vectors that

generate the kernel matrix of J. So that:

(() . ())
() ()

T
T T

a

V q h q
J q V h

q

∂ ∇
= ∇ ∇ =

∂
 (13)

In this case the control low (7) becomes:
1. (.) (,)e e eA J w J q Q q qτ −= − +& & & (14)

With

).().()(edepedevdee xxKxxKxtw −+−+= &&&&

And

373

 Fig. 3. Outdistance obstacle planar robot

0
e

r

x
x

=

;
0

e
r

x
x

=

& ;
d

de
ad

x
x

x

=

&
&

&
;

0

d
de

r

x
x

=

&&
&& ;

with
T

adx V h= ∇&

For a redundancy r=1, 1 ...
T

nV v v= is a simple

vector and its elements vi can be computed such as in [10]:
1

(1) det(())
i

i iv J q
+= − and i=(1,n) (15)

Where, ()iJ q represents the Jacobian J without its ith

column.

As r=1, the computation of Ja is simplified such as in [7]:

(). (())
T

aJ V q Hu h q µ= − (16)

Where µ is a vector ant its elements iµ
are determined by:

1(). .(.) .T T T
i

i

J
h J J J V

q
µ − ∂

= ∇
∂

 and i=(1,n) (17)

and Hu(h(q)) is the hessian matrix given by:

()
(())

h q
Hu h q

q q

 ∂ ∂
=

∂ ∂

Thus, it steel one problem, how one specify the scalar

function h(.) ?

III. OBSTACLES AVOIDANCE METHOD

The function h(q) includes necessarily the effect of the

constraint due to the obstacle. In the case of obstacle

avoidance, this returns mainly to determine the distance

obstacle-robot.

A. Euclidean distance criteria

The method is based on Euclidean distances between the

obstacle center and each of robot arms. One solution is the

use of projection within the scalar product related to the

vectors
1M

r
drawn from the beginning of this moving arm to

the center of obstacle
2M

r
the arms itself [3]. This allows to

determine the Euclidean distances di (i=1,n) between the

obstacle and the different robot arms. But, it is rather the

anti-collision constraint Di which is actually used. The

computation with the anti-collision variables is significant,

but to supplement the problem formulation it is necessary to

define a scalar function dependent on these variables Di,

anti-collision functions. Those latter are often taken in the

following form:

0

1

() () . (())

n

i i

i

h q h q P D qρ
=

= +∑ (18)

Where h0 is used in order to minimize an energy criterion

and it is often taken as
1

2

T
q q , the iρ terms are constant and

the function P(.) is known as penalty function.

Generally, this function is represented by:

1
()

()
i

i

P D
D q

−
= (19)

This leads to the following scalar function h(q):

1

1
() .

2 ()

n
T i

ii

h q q q
D q

ρ

=

−
= +∑ (20)

The gradient of h(q) is given by:

1

T

nh h q h q∇ = ∂ ∂ ∂ ∂ K (21)

So,

2
1

()
n

k i
i k

i kk

D qh
q

q D
ρ

=

∂ ∂∂
= −

∂ ∑ and i=(1,n) (22)

B. Case of Planar Robot

When it is a plan workspace, the obstacle can be seen as

circular such as defined on figure 3. Their co-ordinates are

such as:

1 1 2

T

b bM x x=
r

The coordinates related to the tip of the first arm are given

by:

[]2 1 1 1 1.cos() .sin()
T

M OA l q l q= =
rr

 (23)

The following relations are fulfilled:

1 2
1 2

1 2

cos(,)
.

M M
M M

M M
=

r r
r r

r r (24)

O

A

B

C

x1

x2

ds

q1

q2

q3

rb

1M
r

1d

2d

3d

'

1M
r

''

1M
r

374

 Fig. 4. Workspace of application

1 2

1

1

sin(,)
d

M M
M

=
r r

 (25)

Therefore,
2

2
1 1 2

2
1 1 2

1
.

d M M

M M M

 + =

r r

r r (26)

By using (24) and (25) in (26), the Euclidean distance d1 is

given by:
2 2 2 2
1 1 2 1 1 2 1(.cos .sin)b b b bd x x x q x q= + − + (27)

And thus the anti-collision constraint is then:
2 2

1 1

2 2 2
1 2 1 1 2 1

2

()

(.cos .sin)

()

b s

b b b b

b s

D d r d

x x x q x q

r d

= − + +

=− − + +

+ +

 (28)

Where, ds is a safety distance.

The same procedure is used for D2, with:

'
1 1 1 1 2 1 1. cos .sin

T

b bM x l q x l q= − −
r

[]'
2 2 1 2 2 1 2. cos() . sin()

T
M l q q l q q= + +
r

, (29)

This gives:
2 2

2 1 1 1 2 1 1

1 1 1 1 2 2

2 2
1 1 1 2

(.cos) (.sin)

[(.cos).cos() (

.sin).sin())] ()

b b

b b

b s

D x l q x l q

x l q q q x

l q q q r d

= − − + − +

− + + −

+ + +

 (30)

For D3, the vectors 1M
r

 and 2M
r

 are replaced by

''
1 1 1 1 2 1 2 2

1 1 2 1 2

[(. cos .cos()

.sin .sin()]

b b

T

M x l q l q q x

l q l q q

= − − +

− − +

r

 (31)

''
2 3 1 2 3 3 1 2 3. cos() .sin()

T
M l q q q l q q q= + + + +
r

So that:
2

3 1 1 1 2 1 2 2 1 1

2
2 1 2 1 1 1 2 1 2

1 2 3 2 1 1 2 1 2

2 2
1 2 3

(.cos .cos()) (.sin

.sin()) [(.cos .cos()).

cos() (.sin .sin())

sin()] ()

b b

b

b

b s

D x l q l q q x l q

l q q x l q l q q

q q q x l q l q q

q q q r d

= − − − + − −

− + + − − +

+ + − − − +

× + + + +

 (32)

Thereafter, the expressions (28), (30) and (32) are

introduced into the relation (20) of the anti-collision function

h(q) and its gradient is determined by the relation (22).

IV. CONTROL OF THE ROBOT WITH OBSTACLE

AVOIDANCE

The previous method is used to make the robot avoid the

obstacle (circle in the bottom of figure 4). While ensuring

the realization of the tracking trajectory, the half-circle

representing the desired trajectory shares the plan in 2 zones:

the concave zone and the convex zone. To prevent the arms

from coming to cross the trajectory it is enough that they

evolve in the convex zone (on the left of the trajectory). Such

difficulty can also be solved as avoidance obstacle. Thus, it

is assumed that there is a virtual obstacle materialized by a

circle with the same center than the desired trajectory and of

the radius R2 = R-ds2 (ds2 is a safety distance).

The tracking trajectory represented by a half-circle (fig 4),

is involved by the control law (14). The implementation can

be realized by the same scheme of the figure 1 in which:

 -- x , x& , dx , dx& and dx&& are replaced respectively by ex ,

ex& , dex , dex& and dex&& ;

-- Jacobian J+ and J& are replaced respectively by 1
eJ
−

and eJ& .

The extended Jacobian Je is calculated according to (11),

(15) , (16) and (17).

The scalar function h(q) used in the determination of Ja is

given by relation (18). Since, this function must incorporates

both: constraints due to the real obstacle, and the assumed

obstacle (virtual). So, it is of the form:
3 3

0

1 1

() () 1 . (1 ()) 2 . (2 ())i i i i

i i

h q h q P D q P D qρ ρ
= =

= + +∑ ∑

where (ds1, 1iρ , 1iD) and (ds2, 2iρ , 2iD) are related

respectively to the real obstacle and the assumed one.

Tests are carried out in the same conditions related to the

trajectory realization given in section II and moreover the

control coefficients are not changed.

The parameters of the obstacle avoidance are set as:

[]1 0.02 0.07 0.001diagρ =

[]2 0.2 0.1 0.01diagρ =

The obtained results appear on figure 5. This one shows

that with this method the obstacle avoidance is realized

without disturbing the execution of the position tracking

task.

ds2

O
x1

x2

ds1

375

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
1
(m)

x 2
(m

)

End-effector position

joint 3

joint 2

joint 1

a)Cartisian trajectory

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

T
o

rq
u

e
3
 (

N
.m

)

time(s)

0 0.5 1 1.5 2 2.5 3 3.5 4
-50

0

50

T
o

rq
u

e
2
 (

N
.m

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-100

-50

0

50

T
o

rq
u

e
1
 (

N
.m

)

b) Joint torques

0 0.5 1 1.5 2 2.5 3 3.5 4
-5

0

5

10
x 10

-4

time(s)

e
rr

e
u

r
X

1
(m

)

0 0.5 1 1.5 2 2.5 3 3.5 4
-2

0

2

4
x 10

-4

time(s)

e
rr

e
u

r
X

2
(m

)

c) Tracking errors

Fig.5. Robot Control with obstacle avoidance

Indeed, no robot arm comes into the protected zone around

the obstacle or comes to cross the desired trajectory (arms

evolve in the left side of the trajectory).

Moreover, the position tracking errors are around 0.1 mm

and the joint torques remain within a suitable range.

V. CONCLUSION

In this paper, redundancy is applied to solve the problem

of obstacles avoidance in robot control. Indeed, the r DOF in

more are exploited to create self-motion which acts to

optimize a scalar function. This function is defined in order

to incorporate the anti collision constraints. The self motion

vectors can be introduced in control by using the extended

Jacobean method.

This method is applied in the case of 3DOF planar robot

resulting from the PUMA 560 robot. The control

incorporating this procedure is applied in the case where the

end-effector tracks trajectory in a plane close to an obstacle.

The obtained results show that this control method allows

avoiding obstacle while assuring the desired performances of

trajectory tracking.

REFERENCES

[1] Yunong Zhang and Jun Wang , “Obstacle Avoidance for Kinematic

Redundant Manipulators Using a Dual Neural Network,” , IEEE

Transactions on systems, vol. 34, N°1, Feb. 2004, pp. 752-759.

[2] Fan-Tien Cheng, Jeng-Shi Chen and Fan-chu Kung, “Study and

Resolution OF Singularities for 7-DOF Redundant Manipulator”,

IEEE Transactions on industrial electronic, Vol. 45, N°. 3,June

1998, pp. 469-480.
[3] Benallegue B.Daachi. and A Ramdane Cherif, “Commande neuronale

adaptative de robot Manipulateur Redondant avec évitement

d’obstacles fixes”, International Francophone Conférence of

Automation, Nantes, 08-10 July 2002, pp. 33-38.

[4] Kang Teresa, Solving inverse Kinematics Constraint problem for

Highly Articulated Models. Master of Mathemtics in Computer

Science, GE.University of Walerloo, Canada 2000.

[5] V. Perdereau, C.Passi and M. Drouin, “ Real-time control of

redundant robotic manipulators for mobile obstacle avoidance”,

Robotics and Autonomous Systems, 2002, pp. 41-59.

[6] Jin-Liang Chen,Jing-Sin Liu, Wan-Chi Lee and Tzu-Chen Liang,

“On-line multi-criteria based collision-free posture generation of

redundant manipulator in constrained workspace”,

Robotica(2002),Vol. 20,pp.625-636.

[7] Charles A.Klein, Caroline Chu-Jenq, and Shamir Ahmed , “A new

formulation of the Extended Jacobien Method and its Use in Mapping

Algorithmic Singularities for Kinematically Redundant

Manipulators”, IEEE transaction on robotics and automation,

vol.11N°.1, february 1995, pp. 50-55.

[8] Krzysztof Tchon , “Quadratic Normal Forms of Redundant Robot

Kinematics with application to singularity avoidance”, Robotics and

Automation, IEEE Transactions,Vol.14, Issue 5, Oct. 1998, pp. 834

– 837.

[9] B. Armstrong, O. Khatib and J. Burdick, “The explicit dynamic

model and inertial parameters of the PUMA 560 arm”, IEEE

International Conference on Robotics and Automation, 1986, pp.

510-518.

[10] T.Shamir, “The Singularities of redundant Robot Arms”. The

International Journal of Robotics Research, Vol.9, No.1, February

1990 Page(s):113 – 121.

[11] Degao Li, Andrew A. Groldenberg, and Jean W. Zu “A New

Method of Peak Torque Reduction With Redundant Manipulators”.

Robotics and Automation, IEEE Transactions on Vol. 13, Issue 6,

Dec. 1997 Page(s):845 - 853.

[12] John M.Hollerbach,Member,IEEE, And Ki suh “Redundancy

Resolution of Manipulators Through Torque Optimization” Robotics

and Automation, IEEE Journal of [legacy, pre - 1988] Vol. 3, Issue

4, Aug 1987 Page(s):308 – 316.

376

