

#### 人とロボットの共生学

Toward Socially and Cognitively Assistive Robotics

#### 新妻 実保子(ニイツマ ミホコ)

中央大学 理工学部 精密機械工学科 准教授

2717号室 niitsuma@mech.chuo-u.ac.jp

http://www.mech.chuo-u.ac.jp/~hslab/

#### 人とロボットの共生

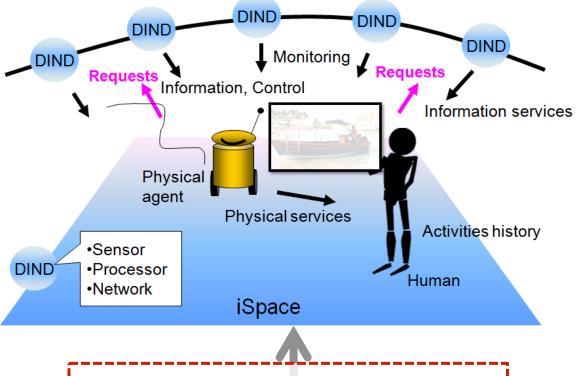
CHUO UNIVERSALLA

- なぜ「共生」なのか?
  - ■ロボット/コンピュータに得意なこと と人が得意なことは異なる
    - ・ロボット/コンピュータ
      - 覚える、同じことを繰り返す、 膨大な計算を行う、決まった行動、など
    - 人
      - 解釈する、認識する、未知なことや変化に対応する、目的に応じて判断するなど
  - ■「共存」との違い
    - 共存・・・共に在る
    - 共生・・・共に生きる

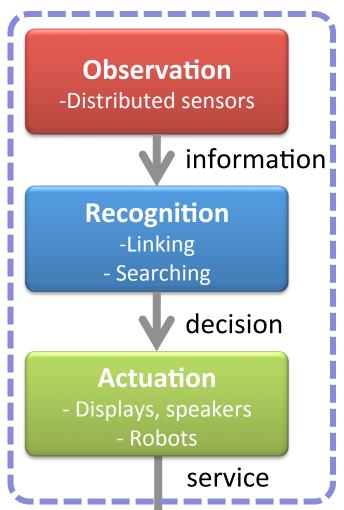
インタラクション interaction

相互に作用




相互補完的な関係を目指したい

## Intelligent Space (iSpace)




● 空間知能化(Intelligent Space)

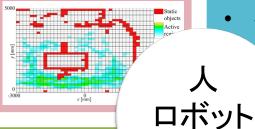
Distributed Intelligent Networked Device



Process to make a space smart



# ヒューマン・システム研究室の研究テーマで




#### 空間知能化

#### 人とロボットが共生するための基盤

- 空間メモリ(User interface in iSpace)
- 環境地図の構築(観測+理解)
- ロボットの 自律移動 (働きかけ)





#### 動物行動学に基づく

#### 人とロボットのコミュニケーション

- 長期的・持続的なコミュニケーション
- 人と犬の関係
- 社会的関係

共生学



#### 人と協調する 知的電動車いす

- 身体的負担の少ない操作方法
- ・ 安心できる自動化
- 客観的な評価手法





# 人の知覚能力を拡張するヒューマンインタフェース

- 振動刺激を用いた触感の提示
- 相対音程差を用いた壁面の提示
- 産業ロボット への応用





2013年度の研究テーマ

# iSpaceにおけるユーザインタフェース



- ユーザインタフェース (user interface: UI)
  - ■インタフェース:二つの世界の界面
  - UI = 機器と人の界面
- ●iSpaceの特徴
  - ■ネットワーク化された多様な機器が存在する





## 空間メモリ

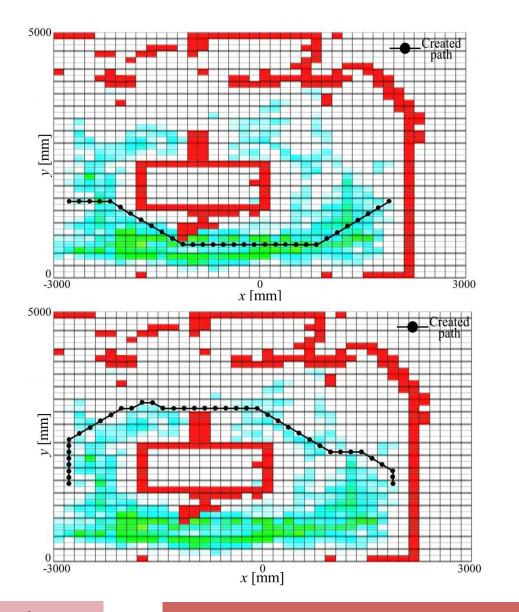


- 統一した方法で異なる機器を操作できるようにする
- 方 実空間をUIに使う → 人とロボット・機器が共有してい
  - 身体を使う → 直感的、スキル不要



空間メモリ

(時空間の記憶)


# iSpaceによる環境地図の構築



- 移動ロボットのための環境地図
  - ■障害物回避、経路計画、自己位置推定に応用される
- 研究課題
  - Simultaneous Localization and Mapping (SLAM)
  - ■3次元環境地図の構築
  - 動物体の地図へ反映 etc...
- 人共存環境における移動ロボットナビゲーション
  - ■ロボットが人が使用する環境に適応する必要がある
  - 方 策
- 人の歩行経路や活動領域を計測する
- ・人の活動領域を地図に表す

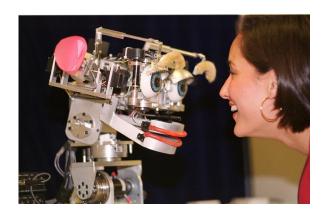
#### 環境地図の経路計画への応用





#### 活動領域を考慮しない

- □ 最短距離となる経路
- □ 移動距離は短いが人の 活動を妨害する可能性 がある


#### 活動領域を考慮する

- □ 活動領域を避けるように 経路が生成される
- □ 活動度合いの低い場所 を通過する

## 人とロボットのコミュニケーション



- 背景と動機
  - ■共生 … 長期的で、かつ持続的な関係の構築が必須
  - 従来手法 … 設計者の経験、主観、好みに基づいて設計 うまく行くか根拠がない!
  - 従来からある人-ロボットコミュニケーションの問題点
    - ✓ 人がロボットへ注意を払わなくなる → 関心を失う
    - ✓「使うときだけのインタラクション」
      - → 使わないとき、 ロボットは何をしている?
- ❖根拠のあるコミュニケーションモデルが必要
- ❖関心を失わないような社会的関係の構築
- ❖人からの指示を常に必要としない自律性



**KISMET -- MIT** 

# 動物行動学に基づく人とロボットのコミュニケーション



- 人と犬の関係に注目
  - ■動物行動学者曰く、「*犬は人と共生する最初のロボット*」
  - ■犬が特別な理由
    - ・犬は人の赤ちゃんと同じように、 飼い主に対して愛着行動を示す

状況を判断して、社会的に振る舞う

状況に応じた行動を示すことにより、 その行動の意味を人も解釈できる

ロボット自身が状況を判断し、 自身で行動を決定できる能力が必要:自律性

方策

犬の行動様式に基づいて、ロボットの自律性を設計する → 人とコミュニケーションする行動モデルを設計する 犬の愛着行動をモデル化した

# 人の知覚能力を拡張するヒューマンインタフェースで



- 人と人工物間の感覚の共有
  - Cognitive Infocommunication という 新しい学問領域
    - Cognitive Infocommunicationに関する最 初の国際会議を2010年に中央大学後楽 園キャンパスで開催
  - ■そのままでは知覚できないものを いかに知覚可能にするか
    - ✓ sensor bridge ... 異種間での感覚 の伝達・共有
    - ✓ sensor sharing … 同種間での感 覚の伝達・共有

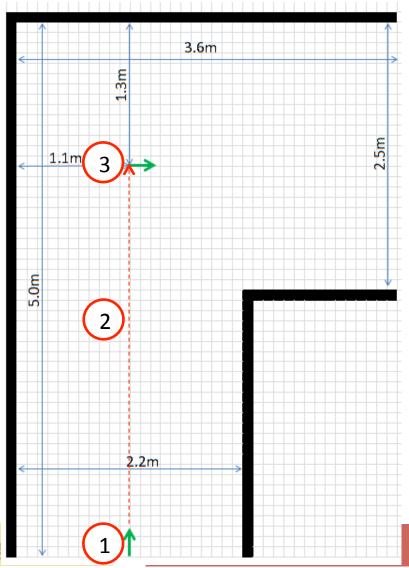



#### 人の知覚能力を拡張するヒューマンインタフェース における研究テーマ

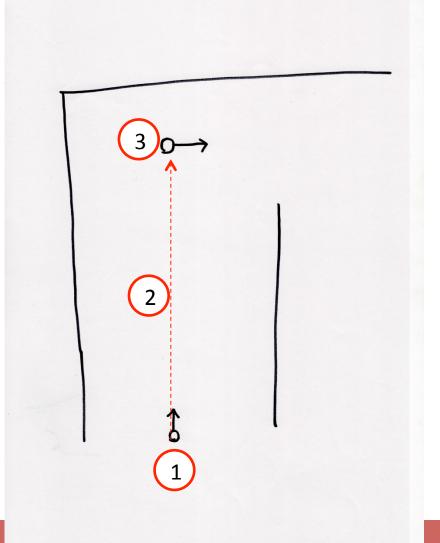
- 感覚器を代替した刺激の提示
  - ■聴覚を用いた壁面形状の提示、メンタルマップ形成 への応用
    - ✓視覚障害者支援
    - ✓近距離、足下の情報は白杖から得られる
    - ✓遠方の情報を接近前に知りたい
    - ✓事前に得た情報をもとに行動を計画したい
  - ■触覚を用いた仮想物体の触感の提示
    - ✓振動を用いた刺激の提示からどんな触感を得るか
    - ✓錯覚を応用した位置の提示

## 聴覚刺激(sin波)による距離感提示






Coglin


# メンタルマップ形成実験 実験結果

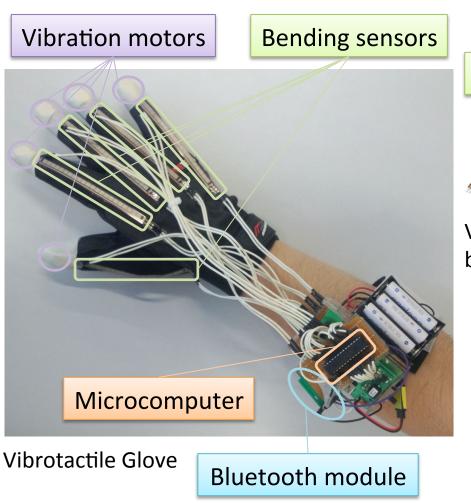


#### 実験環境

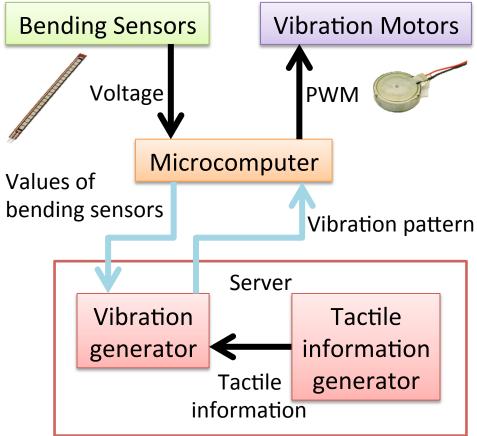


#### 解答




# 触覚を用いた仮想物体の触感の提示で

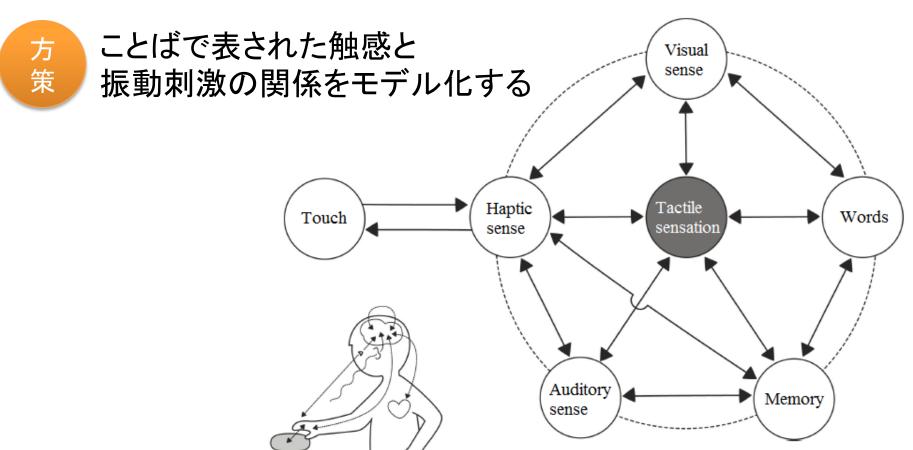
- 触感提示の応用例
  - ■空間メモリの提示
  - ■仮想空間内での仮想物体の提示
  - ■産業用ロボットの遠隔操作への応用 (ノルウェーの企業との共同研究)
    - ・力、ロボットアームの動作、障害物までの距離


- 軽量、小型な触覚デバイス
  - ■爪上における振動刺激の提示

# 振動触覚グローブの設計






#### System configuration



## 振動刺激と触感の関係



- 擬似的な振動刺激から人はどんな触感を思い描くのか
- 思い描いた触感をことばで表現する



## 振動刺激による触感の提示



#### Duty ratio及びactivation time のレベルを変えたとき、 そのレベルの変化に従って触感の強さも変化が見られた項目

|                 | Passive touch          |                        | Active touch                       |            |
|-----------------|------------------------|------------------------|------------------------------------|------------|
| Duty ratio      | Hardness<br>Heaviness  | Smoothness             | Thickness<br>Heaviness<br>Hardness | -          |
| Activation time | Hardness<br>Elasticity | Thickness<br>Heaviness | Hardness<br>Heaviness<br>Thickness | Elasticity |

X Psychophysical layer only

現在の実験結果では、粗さ/滑らかさも提示できることが分かってきた

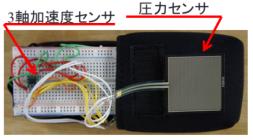
## 人と協調する知的電動車いす



#### ●背景

- ■高齢化により利用者が増加している
- ■事故も増加している
  - ✓ 慣れない操作方法 → 身体的負担増 ジョイスティックによる連続的な入力
  - ✓ 慣れない身体感覚での状況判断 → 認知的負担増 電動車いすにより死角ができる

方 策

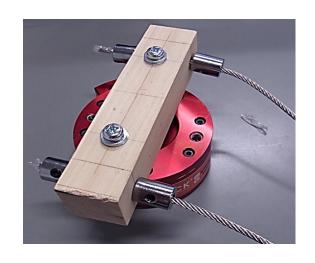

知的電動車いす = 電動車いす + 自律移動ロボット

- ✓人は目的地(進行)方向だけを入力
- ✓ロボットが目的地方向から目的地を推定
- ✓自律的に目的地まで移動する

## 簡便で高精度な入力のために



- 手の傾きを利用したインタフェース
  - ■3軸加速度センサ
  - ■傾きで方向指示

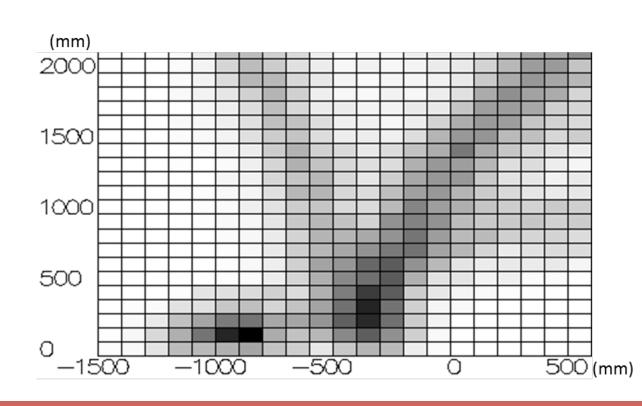



(a)入力インタフェースのデバイス



(b)入力インタフェースの外観

- 手綱型インタフェース
  - ■6軸力覚センサ
  - ■引っぱりで方向指示




# 人の活動履歴を応用した目的地推定



- 正確に行きたい方向を示すのは難しい
- 人のよく立ち止まるところ、滞在して利用する場所を地図に 表現 → 目的地の可能性が高いと考えられる。

おおざっぱな方向 指示で適切な場所 を選択できる



## まとめ



- 人とロボティックシステムの共生
  - ■空間知能化 ・・・ 動的な環境に対応する仕組み
    - ・空間メモリ
    - 環境地図の構築, 経路生成, 障害物回避
      - 移動ロボットナビゲーション
    - 動物行動学に基づく人・ロボットコミュニケーション
    - 人の知覚能力を拡張するヒューマンインタフェース
    - 人と協調する知的電動車いす
  - ■相互補完的な関係の構築

# 今日の課題



- 提出期限: 2013年 6月 24日(月) 12:10 12:40
- 提出場所: 新妻居室 2717号室ドアに設置した提出場所
- 空間知能化する意義について
  - ■実空間でロボットが自在に動くためには、どんな情報が必要になるか
  - 実空間、あるいは人々の振る舞いを観測して、 ロボットに役立ちそうな情報として、どんなものが考えられるか
- 講義の感想
  - 1. 一番面白いと感じたテーマ、話は?
  - 2. なぜ面白いと感じたか