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Abstract— This study addresses the challenge of detecting
the tip of a fencing sword. The swift motion and diminutive
size of the fencing sword tip not only poses difficulties in
detection but also occasionally lead to its omission from video
recordings. Moreover, conventional detection approaches such
as affixing markers to the sword tip are unsuitable in sports
contexts as they could encumber the athletes. In light of
these considerations, our research has devised a system that
exclusively employs monocular camera images to consistently
gather information about the sword tip. Even in cases where
the tip is not captured, we propose a method for predicting its
position based on historical data and subsequent interpolation.
Specifically, the entire sword is recognized using instance
segmentation. And the tip of the sword is identified with
skeletal point information. In instances where the tip eludes
detection, its position is projected using preceding information
and skeletal wrist point data, to ensure uninterrupted tracking.

Our proposed method’s efficacy was confirmed through
various experiments conducted under conditions mirroring
actual match scenarios. These experiments demonstrate the
effectiveness of our approach.

I. INTRODUCTION

In recent years, with the advancement of image processing
technology, research in the field of fencing has been actively
conducted. The visualization of game situations has been
conducted to increase the attractiveness of the sport and offer
more in-depth play analysis. Specifically, there are studies
that identify footwork using skeletal point information ex-
tracted from images [1], as well as research that recognizes
fencing swords in 3D and displays them in real-time on
the wearer’s AR goggles to support training [2], [3]. In
“Sport: Fencing Matches Al [4]”, Alexander P. attenpted
an analysis of fencing match situations and identified the
lack of information about the sword as a significant issue
for making conclusive judgments. To address this challenge,
J. Mo attempted to discern sword contact through an analysis
of audio information from the match, acknowledging the
difficulty of detecting swords via cameras [5]. However, it
can be considered that relying solely on audio information
is insufficient, as the game situation may change even sword
contact or simply based on the sword’s posture. From this, it
is concluded that the acquisition and analysis of information
about the sword are indispensable for the advancement of
future research. Against this backdrop, this study focuses on

IPrecision Engineering Course, Graduate School of Science and En-
gineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
sawahata@sensor.mech.chuo-u.ac. jp

2RITECS Inc., 3-5-11 Shibasaki, Tachikawa-shi, Tokyo, Japan.

3Department of Precision Mechanics, Faculty of Science and Engi-
neering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
{pathak, umeda}@mech.chuo-u.ac.jp

Fig. 1. Sword Tip Tracking: Visualization using our system.

the detection of sword tips. Fencing swords are very thin
and the tip moves at high speeds. In past studies, detection
using markers was common, but due to the burden on players
during matches, actual use in competition was challenging.
Therefore, efforts such as the development of Sword tracer
[6], [7] by Takahashi et al, which involves attaching reflective
material tape to the sword tip and tracking it with an infrared
camera, have been attempted. However, this technology is not
applicable to disciplines that do not require insulating tape.
Alternatively, there is a system called “Fencing Tracking and
Visualization System [8]”, but it requires 24 4K cameras
at 60fps, making it a massive setup and challenging to
handle. Therefore, this research aims to develop a markerless
tracking system without burdening players, using only a
standard camera. These cameras face challenges such as the
sword tip moving too quickly to be captured by the camera
or the significant blurring of the sword tip as shown in
Fig. 2b. To address these challenges, our method predicts and
interpolates undetected parts using past sword information.

The main contributions:

o Development of Markerless Tracking System using nor-
mal camera.

(a) Clear image (b) Blurred image

Fig. 2. Capturing the Tip of a Fencing Sword
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Fig. 3. Flowchart of proposed method.

II. METHOD

A. Concept

In this research, we utilize only RGB images to construct
a detection system for the tip of a fencing sword. Given that
it is impractical to place any burden on players during actual
matches, we have adopted a markerless detection approach
using only video footage. The system is designed to identify
the position of the sword tip and to discern whether the sword
is held by the player on the right or left side. Furthermore,
the system addresses the challenge posed by the high-speed
movement of the fencing sword tip, which can result in it
not being captured in the footage. To overcome this issue,
our system leverages past data and predictive algorithms to
continuously obtain information about the sword.

B. Overview

In the proposed method of this research, four key processes
are employed to achieve continuous detection of the fencing
sword tip. As illustrated in Fig. 3, the first step involves
detecting the entire sword from the whole image and obtain-
ing mask information. Subsequently, to identify the holder,
a correlation is made between the skeletal point information
extracted from the image and the detected mask information.
At this juncture, if the sword is undetected, the third step
performs interpolation using a time-series neural network
trained on the relative movement of the wrist. Conversely,
when the sword is held, the final step identifies the sword tip
by calculating the point farthest from the wrist coordinates
within the identified holder’s mask information. Through
these processes, continuous detection of the fencing sword
tip from video images becomes feasible. The following
section provides a more detailed explanation of these four
steps.

C. Swords Estimation

The sword detection process involves inputting RGB im-
ages into a network trained on a custom dataset. This output,
consisting of mask tensors corresponding to the number of
detected objects, serves as the final output for this process.
For this detection, an instance segmentation technique called
YOLACT++ [9], [10] is employed. This model, a sim-
ple convolutional model, concurrently generates prototype
masks and predicts per-instance mask coefficients, thereby
achieving rapid processing. Since the sword is characterized
by its extreme slenderness and susceptibility to significant
influence from the background environment, robustness is re-
quired. Hence, a highly robust instance segmentation method
is adopted. The dataset comprises a total of 300 samples, all
of which were acquired within a consistent environmental
setting. However, these samples are categorized based on
three distinct distance conditions, with each condition con-
tributing 100 samples to the overall dataset. Furthermore, the
annotation range is not limited to the sword alone, the area
extending to the wrist is incorporated into the learning data
as part of the sword.

D. Pose Estimation

In the approach being utilized for acquiring skeletal key-
point information, a top-down method is employed. The
process begins by extracting the bounding boxes of individ-
vals within a video using YOLOVS5 [11], a renowned object
detection model. This initial step ensures that the system
can identify and isolate the human figures present in the
frames of the video. Once the bounding boxes containing the
individuals are identified, the next step involves the extraction
of skeletal keypoints for two players. This is a crucial aspect
of the method as it provides detailed information about
the posture and movement of the players. To achieve this,



the ViTPose [12] model is used to obtain the keypoints
within the previously detected bounding boxes. ViTPose,
a transformer-based keypoint detector, is instrumental in
accurately identifying the specific locations of various joints
and limbs within the bounding box. By focusing on the
confined area defined by the bounding boxes, the model is
able to analyze and detect the skeletal structure of the two
players with higher precision.

E. Holder Identification

We utilize the mask information of the swords and the
skeletal keypoint information obtained in steps C and D to
identify the players holding the swords. First, we differentiate
the players engaged in the game from other people captured
in the frame. Each player exhibits a brief pause of a few
frames just before play begins. During this moment, we
identify the forward-most hand on the wrist side as the
“listening” hand. We keep track of this information until a
score is determined. We recognize the sword by associating
the sword’s mask information within a specific distance from
the wrist. This distance was determined empirically and
functions as a critical factor in recognizing the sword. By
applying this process to both the left and right players, we
identify and distinguish the swords held by each player.
The distance parameter was fine-tuned through practical
observation, and this method is designed to be clear and
straightforward. By focusing on the spatial relationships
between the sword and the player’s hand, our approach
effectively identifies the sword bearers in a way that is both
logical and easily understandable.

F. Sword Tip Identification

In the current step, we leverage the mask information
obtained from the previous step, which identified the player,
to pinpoint the location of the sword tip. We recognize
the pixel within the mask that is farthest from the wrist
coordinates as the tip of the sword and output its coordinates.
This process ensures that only the information pertaining to
the sword tip is extracted from the mask data.

G. Preprocessing

Preprocessing of Training Data for Sword Tip Prediction
In the task of predicting the sword tip’s position, pre-
processing plays a vital role. The preprocessing consists
mainly of two steps: “Position Correction” and “Scaling.”
These corrections are applied to each frame, retaining the
information from the preceding 10 frames within 11 time
steps.

1) Position Correction: The sword’s coordinates are rep-
resented relative to the wrist’s coordinates. Specifically, the
position correction is achieved by subtracting the wrist’s
coordinates from the sword tip’s coordinates. Since the
fencing video oscillates left and right to track the athlete, this
correction ensures that predictions can be made independent
of the screen’s movement or the athlete’s position within the
frame.

2) Scaling: To facilitate precise predictions irrespective of
the distance between the camera and the athlete, scaling is
performed by leveraging a moment of stillness just before the
commencement of the fencing play. Specifically, the position
values, after correction, are divided by the sword’s length at
that instant. This normalization allows for the prediction of
the sword tip’s position, regardless of the distance between
the camera and the athlete.

Given the position p of the sword tip on axis c¢ at time
step t, the post-processed position p is defined as follows
(Equation 1):
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Here, W denotes the skeletal point of the wrist holding
the sword. ¢ represents the current time step, and ¢ € {z,y}
refers to either the x or y coordinate. The = and y coordinates
of the sword’s tip are utilized as inputs to the predictive
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H. Sword Tip Predictor

The Sword Tip Predictor consists of 2 Temporal Convolu-
tional Networks (TCN) [13] with dilated causal convolutions
to handle the 2D coordinates of the tip of a fencing sword
as a time series, predicting missing coordinate positions.

1) Input Layer: The model’s input consists of 10 frames
of 2D coordinates of the sword’s tip. The shape is [B, 2, 10].

2) Temporal Convolutional Layers: The Temporal Convo-
lutional Layers employ dilated causal convolutions to capture
long-range dependencies in the time series without violating
the causal order of the data. They are composed of Temporal
Blocks defined as follows:

(D

hi = ReLU(Convl1d(z, Wy,d) 4 by) (2)
he = ReLU(Convld(hy, Wa, d) + bz) 3)
r = downsample(x) if required 4)

y = ReLU(h + 1) (5)

Here, x is the input, Wi, Wa, by, bs are the weights and
biases for the convolutional layers, and d is the dilation
factor. The downsample operation is performed if required.
3) Output Layer: The output layer predicts the next
frame’s = and y coordinates of the sword’s tip. The shape
of the output is [B,2,1]. The formula to calculate the
coordinates from the last Temporal Block’s output is as

follows:
output = Linear(hyast, Wout + bout) 6)

Here, hj, is the output from the last Temporal Block, and
Wou and by are the weights and biases for the linear layer.

III. EXPERIMENTS
A. Experiment on Sword Tip Predictor

In this study, we evaluated the performance of the Sword
Tip Predictor (STP). We will refer to Sword Tip Prediction”
as STP in this paper As a benchmark, we conducted com-
parative experiments with a linear regression model. Data
collection was performed using the V120: Trio system to



capture 2D sword movements. Fig. 4a depicts a standard
sword, Fig. 4b shows the swordtip equipped with a motion
capture device, and illustrates Fig.4c the attachment pro-
cess. A specific component (indicated as 3 in Fig. 4c) was
manufactured using a 3D printer. This component includes
an upper part with a screw-type design that enables secure
attachment of the marker. This design ensures continuous
and stable data collection even during rapid movements or
twisting of the sword. For capturing wrist position data, we
utilized fencing gloves. Taking advantage of a portion of the
glove that is made of Velcro, we securely attached the marker
base to the glove(Fig. 4d).

The collected 120[fps] data was downsampled to a frame
rate of 30[fps] to synchronize with video recordings. The
dataset was organized in sets of 10 frames each, resulting in
a total of 3600 sets. The distance between the camera and the
sword was set within 4.0-5.0[m], and data was collected in
four configurations by changing the hand holding the sword
and its orientation. The distribution of these four types of
data is uniform. The STP was trained over 10,000[epochs].

Table. I presents the experimental results using 100 data
for each frame length. These 100 data consist of time-series
data of the x and y coordinates of the sword’s movement.
Similar to the training data, the test dataset is composed of
four configurations. The term “Frame Length” refers to the
number of frames included in each data set for analysis.
In your table, you have frame lengths of 3, 5, and 10. This
means that each data set used for the TCN and Linear models
consists of sequences of 3, 5, or 10 frames, respectively.
The term “Accuracy” in the table refers to the percentage
of correctly predicted sword tip positions within different
pixel ranges (0-15[pix], 0-30[pix], and 0-40[pix]). Higher
percentages indicate better model performance. For example,
in the case of TCN with a frame length of 10, the accuracy
reaches 100[%] for the 0-40[pix] range. Across all data
lengths, the Temporal Convolutional Network (TCN) demon-
strated higher accuracy compared to the linear regression
model. Notably, the longest data length, TCN10, exhibited
the highest accuracy rate. These results confirm that the
method employing TCN can predict sword tip movements
with high precision.

B. Experiment on whole system

In this study, experiments were conducted across the entire
proposed system. The evaluation was carried out over a total
of 5 scenes, with 60 frames for each scene. Each scene

TABLE I. Results of Sword Tip Predictor

Method  Frame Length Accuracy[%]
0-15[pix]  0-30[pix]  0-40[pix]
TCN 3 89 94 95
Linear 72 87 87
TCN 5 91 94 100
Linear 72 81 87
TCN 10 92 96 100
Linear 69 74 86

(a) Normal Sword

(c) assembly (d) glove

Fig. 4. Capturing the Tip of a Fencing Sword

V120

Fig. 5. Environment

featured two athletes and was randomly extracted from actual
game footage. The ground truth was determined by our
research team through careful observation of the video. For
frames where the tip of the sword was not visible, the next
frame was consulted or the location was predicted based on
empirical rules.

The results are summarized in Table. II. A 20[pixel]
margin was considered as the criterion for accurate detection.
This margin was chosen based on the observation that multi-
ple individuals, when annotating the 60-frame videos, had an
average discrepancy of 21 pixels when assigning ground truth
data. Therefore, in this experiment, predictions within a 20-
pixel margin from the ground truth were considered accurate.
The average accuracy of our method was found to be 88.7%,
indicating an improvement in accuracy compared to meth-
ods without the incorporation of STP. Furthermore, when
compared to linear regression models, STP demonstrated an
enhancement in accuracy across all evaluation metrics.

These findings confirm that the introduction of STP con-
tributes to the improvement of position estimation accuracy,
thereby validating the effectiveness of the proposed method
in this study.



TABLE II. Results of Experiment on whole system

Scene  Player  Accuracy[%]
1 Right 100.0
Left 100.0
5 Right 86.3
Left 93.3
3 Right 80.0
Left 81.7
4 Right 100.0
Left 100.0
5 Right 70.0
Left 75.0

C. Discussion

1) Experiment on Sword Tip Predictor: Our method
outperformed linear regression models across all metrics.
Additionally, the results from the Temporal Convolutional
Network (TCN) indicated stable performance regardless of
the length of the input vector. We observed that the method
was capable of accurately predicting sword movements in
scenes with both intricate and large-scale motions, irrespec-
tive of data seasonality. On the other hand, linear regression
models only provided high-accuracy predictions for trajec-
tories with seasonal patterns that matched the length of the
vector. Furthermore, as the length of the vector increased, the
complexity of the sword movements also increased, leading
to a decrease in prediction accuracy.

2) Experiment on whole system: In Experiment on whole
system, we evaluated the proposed method using scenes
extracted from actual game footage, achieving an average
accuracy rate of 88%. The photos of the demonstration
are presented in Fig. 6. Fig. 6a shows the output with-
out predictions, while Fig. 6b represents the output with
the applied prediction model. In cases where the predic-
tion model is used, the wrist coordinates are indicated as
“None.”Unsuccessful scenes are illustrated in Figure 10.
The errors could be broadly categorized into three types:
“misidentification of skeletal points(Fig. 6c¢),” “significant
overlap of swords (Fig. 6d),” and “incorrect prediction val-
ues.” Errors in skeletal point identification fundamentally
altered the reference wrist position, subsequently affecting
the output information for the sword tip. In cases where
the swords significantly overlapped, the algorithm sometimes
incorrectly identified the opponent’s sword hilt or wrist
as the sword tip. These were considered false detections,
attributed to the inability to output the correct detection.
Lastly, the incorrect prediction values are believed to have
been influenced by the inaccuracies in the sword detector.
During the training phase of STP, only ground truth data were
used without introducing any noise into the training process.
As a result, there is a possibility that errors in prediction
output increased due to the lack of variability in the training
data.

(d) resultO3

(c) result04

Fig. 6. result

IV. CONCLUSION

Our proposal presents a sword tip detection system for
fencing competitions that exclusively employs image data.
Specifically, we utilize real-time semantic segmentation to
detect overall sword information and skeletal points, enabling
the identification of each player’s sword tip. Given the
small size and high-speed movements of fencing sword tips,
instances arise where they do not appear in the images.
Even in such scenarios, our approach employs a sword
tip predictor to predict and interpolate the undetected tips
based on past detections. This methodology allows for the
detection of sword tips that are not visible in the images. The
effectiveness of our system was validated through evaluation
experiments utilizing actual match videos. In the accuracy
evaluation experiments of the Sword Tip Predictor (STP),
our network, which incorporates Temporal Convolutional
Networks (TCN), outperformed other methods, achieving the
highest scores when predicting for ten frames. When utiliz-
ing STP within the comprehensive system experiment, we
achieved an accuracy of 88.7%. However, challenges remain
in our approach, particularly regarding accuracy drops in
scenarios where fencers overlap or sword-to-sword contacts
occur. To address these challenges, we are considering the
development of a specialized skeletal point estimation system
tailored to fencing competitions. Furthermore, enhancing the
precision of STP using datasets that include instances of
sword contact is essential.

Looking ahead, we envision the utilization of these detec-
tion results to develop an Al referee capable of assessing
the state of fencing matches. Creating a rule-based Al
referee requires accurate determination of sword-to-sword
contacts, a critical aspect of judging. While our current
system alone cannot discern such contacts, by combining
continuous sword information and posture data extracted
from images, we strive to achieve a rule-based Al referee
capable of making these determinations.
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