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Abstract—In this paper, we propose a sequential SLAM
method considering semi-dynamic objects that is robust in
dynamic indoor environments. Generally, accuracy of SLAM
decreases in dynamic environments and environments with few
geometric features. Therefore, the proposed method utilizes
semantic information in addition to geometric information via
object detection, and extracts point clouds that are effective for
localization by considering the attributes and relationships of the
objects. Moreover, the method can extract more features even in
environments with few static objects and clearly identify the use
of each object point cloud for SLAM by adopting the concept of
semi-dynamic objects. The effectiveness of the proposed method
is verified by experiments.

Index Terms—SLAM, object detection, scan matching, mobile
robot, dynamic environments

I. INTRODUCTION

In recent years, as the working population declines, robots
are being used to replace human tasks. Many autonomous
robots have already been deployed in specific spaces such
as airports, restaurants and factories, where they are used
for a variety of purposes, including transportation, security,
and cleaning. Autonomous robots in these environments often
use pre-built, high-precision maps. In other words, the map
must be rebuilt each time the environment changes such as a
construction site.

Simultaneous Localization and Mapping (SLAM) is often
used to construct maps. When SLAM is classified by sensor,
there are typically LiDAR SLAM [1], [2] and Visual SLAM
[3]–[5]. Besides these, there are SLAM using WiFi [6], sonar
[7] and so on. In some cases, sensor fusion is used to overcome
situations that would be difficult with a single sensor.

However a static environment is often a prerequisite in the
SLAM described above.This is due to two major problems
with general SLAM in a dynamic environment. First, the

frequent mismatch of correspondences between frames can
degrade accuracy for localization. Second, a phenomenon
called “flying ghosts” [8] occurs. This phenomenon is that
unnecessary point clouds of dynamic objects such as people
remain in the constructed point cloud map, which affects
mapping. Moreover, in environments with poor geometry
features such as straight corridors, localization may fail due
to degeneracy, which occurs when the self-location is not
uniquely determined because the geometric features are sim-
ilar. In [9], dynamic and static objects were predefined, and
a system was constructed to cope with dynamic environments
by removing dynamic point clouds and using static objects as
landmarks through deep learning detection. However, some
of the defined static objects, such as PCs and chairs, had
the potential to move and could not be guaranteed to be
static. Furthermore, since there are generally few static objects
that do not completely change position over time, approaches
[10] that removes all potentially moving objects could break
localization in environments with poor geometry features.

Thus, we introduce the concept of semi-dynamic objects
[11] and propose a robust and accurate SLAM method for
indoor dynamic environments. The definition of semi-dynamic
objects is described in detail in section II-B. This method can
be used to easily build maps of frequently changing envi-
ronments, and the resulting environmental maps are expected
to be used as preliminary information for self localization
estimation by autonomous mobile robots.

II. PROPOSED METHOD

A. Outline

Fig. 1 shows flow of the proposed method. First, RGB
images and 3D point clouds are acquired in multiple frames
using an RGB-D camera. Wheel odometry obtained from
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Fig. 1. Flow of the proposed method

different frames is also acquired to use the initial position for
the scan matching. Next, object point clouds are extracted from
the acquired point clouds using image-based object detection.
This object detection method is described in section II-C.
Dynamic point clouds are then removed, leaving only static
point clouds that are effective for positioning. This method
is explained in section II-E. The static point cloud contains
not only 3D coordinate information, but also information on
the object and its color. The static point cloud is used for
point cloud registration by ICP (Iterative Closest Point) [12] ,
and the rotation matrix R and the translation matrix T are
calculated. Finally, R and T are used for localization and
mapping.

B. Definition

We classify objects into three categories based on their
frequency of movement: static objects, semi-dynamic objects,
and dynamic objects. Dynamic objects are defined as those
that move frequently such as humans, semi-dynamic objects
are those that move occasionally such as chairs [11], and
static objects are those whose positions are fundamentally
unchanged such as walls. In our experiments, we consider
humans as dynamic objects, cardboard boxes as semi-dynamic
objects, and doors as static objects. As we assume an indoor
environment in our study, we disregard external factors such as
wind, and assume that semi-dynamic objects move only due to
the influence of dynamic objects. In actual construction sites,
cardboard boxes and carts do not move on their own, and it
can be said that they move only when acted upon by dynamic
objects such as humans or robots.

C. Object Detection

In this method, object detection was performed on RGB
images acquired by an RGB-D camera using YOLOv4 [13].
The objects which we want to detect in this study had not
been trained previously, so we were newly trained. The human,
cardboard, and door were trained using 4200 images, which
were expanded from the 175 images taken by the author
by adding left-right inversion, sesame noise, and brightness
changes to the images. Fig. 2 shows an example of the output
results, indicating that a person, a cardboard box, and a door
were detected, respectively. The information obtained from

Fig. 2. Detection result by YOLO trained custom dataset

YOLOv4 results is used to extract object point clouds as
described in section II-D.

D. Point Cloud of Each Object

The range image can be converted into a 3D point cloud.
Therefore it is possible to extract a point cloud corresponding
to the object region including the rectangular region containing
the background in the image by matching the RGB image
and the range image obtained in section II-C. However, since
the point cloud includes the background behind it as well,
clustering is performed after downsampling. The point cloud
obtained from the RGB-D camera is dense, and if processed
as is, the calculation time for clustering and scan match-
ing becomes long. Therefore, downsampling is performed
to reduce the computation cost. In this method, voxel grid
downsampling is used to equalize the density of the point
cloud. The clustering method adopts Euclidean clustering
using the Euclidean distance between points, which enables
exclusion of the point cloud of walls to some extent.

Point clouds are also converted for the areas where objects
are not detected in the image, and after downsampling, they
are stored in memory. These point clouds are not used for
localization, but are left as point clouds used for map building.

E. Selection of Point Clouds for Registration Considering
Semi-dynamic Objects

As mentioned in section II-B, whether a semi-dynamic
object is moving or not is considered to be caused by a
dynamic object in the indoor case. We focuse on the distance
between the semi-dynamic object and the dynamic object.
Therefore, if there is a dynamic object near a semi-dynamic
object, the semi object is determined to be moving.

Fig. 3 shows a top view of the 3D space. The assumption is
that we know what object each point corresponds to via object
detection. The points represent the point cloud acquired from
the sensor. The blue points correspond to doors, the orange
points to cardboard boxes, and the red points to people. Also,
the green triangle represents the robot.

First, the center of gravity of each object is calculated by
averaging the 3D coordinates of the object points. The distance
from the center of gravity of the dynamic object point cloud
to the center of gravity of the semi-dynamic object is then
calculated. If the Euclidean distance between the center of



gravity of the dynamic object point cloud and the center of
gravity of the semi-dynamic object point cloud is greater than a
certain threshold value λ, the semi-dynamic object point cloud
is used as the static point cloud for the alignment calculation.
Conversely, if the distance is less than the threshold, the semi-
dynamic object point cloud is considered to be a dynamic point
cloud and is removed, and is not used for either positioning
or map construction. The threshold value of λ is empirically
set to 1.0 m. Fig. 3(b) shows that a semi-dynamic object
is considered dynamic or static by the distance between the
centers of gravity. In the figure, the points surrounded by the
blue dashed line indicate that the group of points is considered
static, while the points surrounded by the red dashed line
indicate that the group of points is considered dynamic. When
the distance d1 is less than λ, it can be dynamic. On the
other hand, when the distance d2 is more far than λ, it can be
static. Here, the point clouds judged to be static are used for
positioning, i.e., localization. The same process is performed
for each frame in sequence, with the static point clouds
obtained in adjacent frames used as input for registration by
ICP, and map construction based on that localization. Wheel
odometry obtained from adjacent frames is used for initial
positioning before ICP.

Fig. 4(a) and 4(b) show the actual data before and after
point cloud selection for positioning, respectively. Fig. 4(a) is
the result of the process described in section II-D based on
the information as shown in Fig. 2 and the range image. Fig.
4(b) shows that the point cloud of a person and a cardboard
box held by the person, which existed in Fig. 4(a), have been
removed by the processing described in this section. This
removes the negative impact of the dynamic point cloud on
SLAM.

(a) Environments (b) Process

Fig. 3. Explanation of selection of static point clouds for registration

(a) Before processing (b) After processing

Fig. 4. Example of selection of static point clouds for registration

III. EXPERIMENT

A. Experimental Conditions

We conducted experiments to verify whether the accuracy
has improved compared to conventional methods. Also, this
experiment was conducted in a scenario where a person carries
a cardboard box in a linear corridor as shown in Fig. 5(a),
which is assumed to be dynamic and low geometric feature
environments. There are three cardboard boxes, pre-defined as
semi-dynamic objects, two are placed on the ground and the
other was carried by a person along the way. Next, we explain
Fig. 5(c). The numbers represent the positions of each object in
each frame. The red, yellow, blue, and green symbols represent
a person, cardboard, door, and robot, respectively. The robot
was moved forward 1.0 m at a time by five times, using marks
previously placed on the floor, and six measurements were
taken. If the correction amount by localization using ICP is
extremely large, the point cloud registration is judged as a
failure, and only wheel odometry is used for localization.

The evaluation metrics were the robot pose error (RSE)
and the map construction result. The RSE was quantitatively
evaluated by the Euclidean distance between the true position
and the estimated position. Comparisons were made for cases
where human removal processing was not performed, cases
where human removal processing was performed [6], and
cases where the proposed method was used. In all cases,
the ICP implemented in the Point Cloud Library (PCL) was
used for close localization. The map construction results
were compared between the case without the human removal
process and the case with the proposed method to qualitatively
evaluate the presence or absence of unnecessary point clouds.
The difference between the map construction results of the
proposed method and those of the human removal SLAM [14]
was not shown in the experimental results because it depends
on the definition of dynamic and semi-dynamic objects. For
semi-dynamic objects classified as dynamic, there is no prob-
lem with not using them in both localization and mapping.
However, for semi-dynamic objects classified as static, there
is a possibility that they may move with temporal changes
even if they were static and present at any position during
SLAM. If localization is performed using a pre-build map that
includes semi-dynamic objects and those objects have moved
to a different location than they were during SLAM, there
is a risk that the accuracy of localization will decrease. For
these reasons, the proposed method did not use point clouds
of semi-dynamic objects for mapping, regardless of whether
they were static or dynamic during SLAM.

In this study, a Pioneer 3-AT by Adept MobileRobots was
used as the mobile robot, and RealSense LiDAR Camera L515
by Intel as an RGB-D camera was fixed it as shown in Fig.
5(b). The mobile robot was controlled by the author using a
laptop PC.

B. Experimental Results

Fig. 6 and Table I show the results of the robot pose error
whose units is meters. From these results, it can be said that



(a) Environments (b) Equipments

(c) Scenario

Fig. 5. Experimental conditions

the proposed method is more accurate localization than the
compared methods in this experimental scenario. This may
be thanks to the fact that the proposed method was able to
utilize a larger number of static point clouds for localization
than the other methods. However, all methods failed to localize
with ICP in the fifth frame. For the other two methods, the
accumulated errors became larger, and they fell into the local
minimum, resulting in failure of correct positioning. In the
case of the proposed method, the number of objects that can
be used for positioning is reduced because a cardboard box
cannot be observed in the fifth frame due to the viewing angle
of the sensor.

Next, we compare the results of the constructed map. Fig. 7
shows the results of map construction without human removal
and with the proposed method. Fig. 7(a) shows that the
constructed point cloud includes people and cardboard boxes,
while Fig. 7(b) shows that the point clouds of people and
cardboard boxes were almost completely removed. This shows
that the proposed method is robust to dynamic environments.

Fig. 6. Robot pose error

TABLE I
ROBOT POSE ERROR FOR EACH METHOD

Method 0 1 2 3 4 5
Only ICP 0.000 0.173 0.271 0.455 0.533 0.440

Akiba’s [14] 0.000 0.177 0.280 0.189 0.276 0.181
Ours 0.000 0.103 0.143 0.106 0.056 0.077

(a) Without people removal (b) Proposed method

Fig. 7. Constructed maps by each method

IV. CONCLUSION

In this paper, we proposed an sequential SLAM method
that extracts effective static point clouds for localization based
on the relationship between the attributes of objects detected
using YOLO and the distances between objects in 3D space in
dynamic indoor environments, and demonstrated its usefulness
for SLAM. Experimental results show that incorporating and
using the concept of semi-dynamic objects contributes to the
robustness of SLAM in indoor dynamic environments.

However, the fact that errors accumulate over long distances
when used sequentially is an issue for this method. It is
necessary to optimize not only sequential processing, but also
the entire processing comprehensively, including loop closure,
taking into consideration the handling of semi-dynamic ob-
jects. In the future, we will conduct experiments under various
scenarios to verify the effectiveness of this method.
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[4] Raúl Mur-Artal, Juan D. Tardós, “ORB-SLAM2: an open-source SLAM
system for monocular, stereo, and RGB-D cameras,” IEEE Transactions
on Robotics, Vol.33, No.5, pp.1255-1262, 2017.

[5] Felix Endres, Jürgen Hess, Jürgen Sturm, Daniel Cremers, Wolfram
Burgard, “3-D mapping with an RGB-D camera,” IEEE Transactions
on Robotics, Vol. 30, No. 1, pp. 177-187, 2014.

[6] Brian Ferris, Dieter Fox, Neil Lawrence, “WiFi-SLAM using Gaussian
process latent variable models,”, Proceedings of the 20th international
joint conference on Artifical intelligence, Vol. 7, pp. 2480–2485, 2007.

[7] Jinwoo Choi, Sunghwan Ahn, Wan Kyun Chung, “Robust sonar fea-
ture detection for the SLAM of mobile robot,”IEEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 3415-3420, 2005.



[8] M. Arora, L. Wiesmann, X. Chen and C. Stachniss, “Mapping the static
parts of dynamic scenes from 3D LiDAR point clouds exploiting ground
segmentation,” European Conference on Mobile Robots (ECMR), pp. 1-
6, 2021.

[9] Fanguwei Zhong, Sheng Wang, Ziqi Zhang, China Chen, Yizhou
Wang,“Detect-SLAM: Making object detection and SLAM mutually
beneficial,” IEEE Winter Conference on Applications of Computer Vision
(WACV), 2018.

[10] Wenbo Liu, Wei Sun, Yi Lu,“DLOAM: real-time and robust LiDAR
SLAM system based on CNN in dynamic urban environments,”IEEE
Open Journal of Intelligent Transportation Systems, 2021.

[11] Hongjun Zhou, Shigeyuki Sakane,“Localizing objects during robot
SLAM in semi-dynamic environments,” IEEE/ASME International Con-
ference on Advanced Intelligent Mechatronics, 2008.

[12] Paul J. Besl, Neil D. McKay, “A method for registration of 3-D shapes,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.
14, No. 2, pp.239-256, 1992.

[13] Alexey Bochkovskiy, Chien-Yao Wang, Hong-Yuan Mark Liao,
“YOLOv4: Optimal speed and accuracy of object detection,”
arXiv:2004.1093, 2020.

[14] Keigo Akiba, Ryuki Suzuki, Yonghoon Ji, Sarthak Pathak, Kazunori
Umeda, “Performance improvement of ICP-SLAM by human removal
process using YOLO,” Applied human informatics, Vol.5, No.1, pp.1-13,
2023.




