
  

  

Abstract— Robotic systems are being used to automate 

convenience stores and retail stores, including competitions such 

as the World Robot Summit. Many of the systems that have been 

proposed so far are environmentally dependent, such as putting 

markers on product packages or using motorized shelves 

modified from existing shelves and are not easy to implement in 

stores. Therefore, we proposed a system to dispose of products 

with as few changes to the environment as possible. To realize 

the system, we proposed three approaches: markerless product 

disposal, autonomous movement with navigation, and customer 

detection with sensors that can be placed at any position. We 

conducted verification based on real convenience store scenarios 

and discussed the insights and challenges obtained from it. 

I. INTRODUCTION 

This paper presents the proposal and technical challenge 
for the stock and disposal task by Team HARChuo at the 
World Robot Summit (WRS) [1] Future Convenience Store 
Challenge (FCSC 2023) [2] held in July 2023. 

The Stock and Disposal Task is one of the competitive 
tasks of the FCSC. The rulebook for the Stock and Disposal 
Task [3] describes the characteristics of the task as follows: 
‘‘The proposed system must contribute to energy saving and 
work efficiency.’’ The accuracy of the developed system will 
be competed by demonstrating the stock and disposal process 
in a near-future convenience store using robotic technology. 
The specific roles of the system include autonomous 
movement to the product shelf, product disposal, interruption 
of the task when approaching customers, and avoidance. 

In research related to the Stock and Disposal task, many 
systems are environmentally dependent. For example, the 
products themselves need to be marked to recognize the type 
and posture of the products. Moreover, the shelves themself 
need to be motorized or automated to facilitate product 
removal, and the shelves need to have many sensors to 
recognize the products and approaching customers [4-9]. 
There are concerns that the lack of product visibility will have 
a negative impact on customers' willingness to purchase. In 
addition, if motorized shelves are installed and many sensors 
are fixed to the environment, it will take time to recover from 
a system failure, and the layout of the store cannot be easily 
changed.  

To deal with these issues, we are developing a mobile 
manipulation system that disposes of product items as 
environmentally independent as possible. This system is 

applicable not only in convenience stores but also in retail 
stores. The concept of the proposed system is to use the 
original packaging without markers on the products, to use 
simple sliding shelves without motorization or automation, to 
allow mobile manipulators to move without being controlled 
by markers, and to enable customer detection with only one 
sensor that can be placed freely in the store. 

To realize this concept, we propose a mobile manipulation 
system consisting of three elements: robotic arm control for 
product disposal, mobile manipulator navigation, and 
customer approaching detection. For product disposal, image 
processing is performed using an RGB-D camera attached to 
the robotic arm. For object detection, YOLACT [10], which is 
a Realtime Instance-Segmentation robust to overlapping 
objects, is used. Principal component analysis is performed on 
the YOLACT detection results to calculate the grasped 
position of the object. For navigation, SLAM is performed 
using point cloud information acquired from a 2D LiDAR. For 
customer detection, the Single 3D LiDAR-based Moving 
Object Extraction system (S3L-MOE system) [11] is used. 
The S3L-MOE system is designed to detect static information 
such as object placement and dynamic information such as 
human activity by projecting 3D point clouds obtained from 
the 3D-LiDAR onto a two-dimensional cell. By using these 
three approaches, the system can be made independent of the 
environment. In this paper, we propose a system according to 
the following items and contribute by publishing the results. 

• Disposal by a robotic arm without attaching markers 
to the products and without motorizing or automating 
the shelf itself. 

• Navigation without attaching markers to the 
environment for self-location estimation. 

• Detection and avoidance of customers using a system 
that can be freely installed at any position in the 
environment. 

II. SYSTEM OVERVIEW 

A. Hardware 

The hardware constraints of the mobile manipulator and 
the product shelf are defined in the rulebook [3]. To meet those 
constraints, we prepared a mobile manipulator and product 
shelf as shown in Fig. 1. The mobile robot shown in Fig. 1(a) 
is equipped with a robotic arm and a two-fingered parallel 
robotic hand. Image processing is performed using the RGB-
D camera mounted on the robotic arm to control the robotic 
arm and hand. The mobile robot navigates using information 
obtained from a 2D LiDAR installed. Additionally, a 3D 
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LiDAR is installed in the environment for customer detection 
mentioned in Section III (Fig. 1(b)). 

The shelf is designed with sliding shelf boards (Fig. 1(c)). 
This is designed to achieve a similar purpose as pulling out 
shelves to improve operational efficiency when arranging 
products in an actual convenience store while also ensuring 
workspace allocation and enhancing efficiency for the robotic 
arm. One ArUco marker is placed on the shelf and used to 
measure the distance when pulling out the shelf. 

B. Software 

The mobile robot is required to operate autonomously after 
the start of the competition, according to the rule [3]. To 
propose a system that fulfills the concepts outlined in 
subsection I, we performed tasks following the flow shown in 
Fig. 2. Furthermore, to achieve autonomous operation, we 
developed the software system depicted in Fig. 3. We will 
explain the system in Fig. 3 using Fig. 2 as a reference.  

In this system, System Manager shown in Fig. 3 utilizes 
Robot Status and Move Flag to control the robotic arm and the 
mobile robot independently. This enables separate control of 
these two components. When one of them is in motion, its 
status is transmitted as Robot Status, and Move Flag is sent to 
the other component to indicate whether it is allowed to move.  

First, as shown in Fig. 2(a), the mobile manipulator moves 
to the front of the shelf. At this point, in Fig. 3, System 
Manager sends a Move Flag to the mobile robot, which is 
highlighted in orange, initiating its movement. 

After reaching the front of the shelf, information 
indicating the mobile robot's stoppage is transmitted to 
System Manager. Subsequently, System Manager sends a 
Move Flag to the robotic arm depicted in blue in Fig. 3. As a 
result, as shown in Fig. 2(b), the robotic arm performs tasks 
such as pulling out the shelf, detecting objects, and disposal 
the products. 

During the disposal process, there is a possibility that 
customers may approach the shelf for shopping (Fig. 2(c)). In 
such cases, it is necessary for the mobile manipulator to detect 
customer and moving away from the front of the shelf, 
ensuring that customers can freely continue shopping. Here, 
we continuously detect customers using the 3D LiDAR sensor. 
The detected result is transmitted to System Manager via the 
green block shown in Fig. 3. If customers are detected, System 
Manager sends a flag to halt the robotic arm's movements. 
Once the robotic arm comes to a halt, the robotic arm informs 
the robotic arm's status, System Manager sends a flag to the 
mobile robot to initiate avoidance actions. When the customer 
moves away from the front of the shelf, System Manager sends 
a flag to the mobile robot to return to the front of the shelf. 
After receiving the flag of the mobile robot's arrival, System 
Manager sends a flag to the robotic arm to restart the task.  

Once the disposal task is completed, as shown in Fig. 2(d), 
the mobile manipulator returns to the stock room. If the 
product disposal is succeeded, System Manager sends a Move 
Flag to the mobile robot to go back to the stock room.  

For the system operation of robotic arms and mobile robots, 
Robot Operating System (ROS) is used. The 3D LiDAR used 
for customer detection is integrated with RT middleware. 

Communication between ROS and RT middleware is 
established through TCP/IP communication. 

III. METOHDS 

A.  Robotic Arm Control 

The control of the robotic arm and robot hand is performed 
using the RGB-D camera mounted on the robotic arm. Here, 
the processes in Fig. 3 are explained using Fig. 4.  

First, shelf extraction is performed (Fig. 4(a)). According 
to the competition regulations, the maximum gap between the 
shelf boards is 250 mm, posing a challenge for robotic arm 
operations. Therefore, to ensure sufficient workspace for the 
robotic arm, the robotic arm pulls out the shelves. To pull out 
shelves, the distance to the ArUco marker installed on the shelf 
is measured using an RGB-D camera mounted on the robotic 
arm. Based on the measured distance, the shelves are pulled 
out as shown in Fig. 4(a2) to (a4).  

Next, object detection is performed (Fig. 4(b)). For object 
detection, the robotic arm is positioned in a Birds Eye Pose 

 
Figure 1.   Hardware components. 

 
Figure 2.   Flow of the proposed system. 

 
Figure 3.   Software system. 



  

(BEP), as shown in Fig. 4(b1), allowing the RGB-D camera to 
capture an overhead view of the objects. When performing 
object recognition in BEP, YOLACT [10], which is one of the 
Real-time Instance Segmentation methods, is used. YOLACT 
is suitable for product disposal due to its ability to achieve real-
time detection and its robustness in detecting overlapping 
objects. Running YOLACT in BEP results in object detection 
as shown in Fig. 4(b2). 

Using the results of object detection, the positions of the 
objects are calculated. By applying RGB thresholding to the 
image from Fig. 4(b2), a binary image is obtained where object 
regions are displayed in white (Fig. 4(c1)). From this binary 
image, the contours of each object are extracted, and the pixel 
coordinates of the image centroid, indicated by the red circles 
in Fig. 4(c2), are calculated. This process allows us to 
determine the number of N objects centroids on the shelf.  

Using the calculated results, the order to manipulate each 
object is determined by horizontally traversing from the top 
left of the image. Each object is processed individually based 
on the established order. For the 𝑖 th object, its position is 
calculated in 3D coordinates ( x𝑖𝐵𝐸𝑃

𝑐𝑎𝑚𝑒𝑟𝑎 , y𝑖𝐵𝐸𝑃

𝑐𝑎𝑚𝑒𝑟𝑎 , z𝑖𝐵𝐸𝑃

𝑐𝑎𝑚𝑒𝑟𝑎 ) 

using the pixel value of the calculated image centroid for the 
𝑖th object, the distance to the image centroid obtained from the 
RGB-D camera, and the camera's intrinsic parameters. Here, 
the superscripts denote the coordinate systems, and subscripts 
indicate the 𝑖 th object. And the subscript 𝑖  represents the 
calculated robotic arm pose. These calculated coordinates 
serve as the position of the object, which is set as the target 
position for controlling the arm.  

Next, based on the target positions, the robotic arm is 
controlled (Fig. 4(d)). Attempting to control the arm from BEP 
to the target position using the shortest path might lead to 
collisions with objects along the path. Therefore, control is 
executed based on the Cartesian coordinate system. 
MoveIt[12] is used for robotic arm control and coordinate 
transformations. Firstly, the detected object position in BEP is 

transformed from the camera coordinate system to the robotic 

arm's wrist coordinate system ( x𝑖𝐵𝐸𝑃

𝑤𝑟𝑖𝑠𝑡 , y𝑖𝐵𝐸𝑃

𝑤𝑟𝑖𝑠𝑡 , z𝑖𝐵𝐸𝑃

𝑤𝑟𝑖𝑠𝑡 ). 

Subsequently, it is further transformed from the wrist 
coordinate system to the robotic arm base coordinate system 

(x𝑖𝐵𝐸𝑃

𝑏𝑎𝑠𝑒 , y𝑖𝐵𝐸𝑃

𝑏𝑎𝑠𝑒 , z𝑖𝐵𝐸𝑃

𝑏𝑎𝑠𝑒). After the calculations, the robotic arm is 

positioned into the Top Pose (TP) as shown in Fig. 4(d1). In 
this TP pose, the coordinates are transformed from the base 

coordinate system(x𝑖𝐵𝐸𝑃

𝑏𝑎𝑠𝑒 , y𝑖𝐵𝐸𝑃

𝑏𝑎𝑠𝑒 , z𝑖𝐵𝐸𝑃

𝑏𝑎𝑠𝑒) to the wrist coordinate 

system (x𝑖𝑇𝑃

𝑤𝑟𝑖𝑠𝑡 , y𝑖𝑇𝑃

𝑤𝑟𝑖𝑠𝑡 , z𝑖𝑇𝑃

𝑤𝑟𝑖𝑠𝑡). This coordinate transformation 

enables control to guide the robotic arm to the target position 
of the object. Using this coordinate transformation, the robotic 
arm's control is performed to move to the target position as 
shown in Fig. 4(d2).  

Once the target position is reached, the grasping position 
is calculated. After performing object recognition again using 
YOLACT in the configuration of Fig. 4(d2), Fig. 4(e1) is 
obtained. Following the same procedure as with Fig. 4(c1), a 
binary image is obtained, and the object contours are extracted. 
Performing principal component analysis (PCA) based on the 
object contours with respect to the centroid of the object results. 
In Fig. 4(e2), the direction of the second principal component's 
eigenvector, represented by the green line, is calculated. Here, 
the second component of the principal component analysis and 
the plane perpendicular to the direction are assumed to have a 
larger graspable area for the robotic hand. The intersection 
point of the eigenvector's extension line and the object's 
contour determines the grasping position as indicated by the 
green circle. Upon determining the grasping position, the 
output specifies how much the robotic arm's wrist needs to 
rotate and how much the robotic hand should close. 

Using the calculated results, the robotic arm's wrist and 
hand are controlled as shown in Fig. 4(f). Subsequently, the 
robotic arm is controlled to dispose of the object into the 
container (Fig. 4(g)). Once the disposal is completed, the 
robotic arm is controlled to return the shelf back to its original 
position, as shown in Fig. 4(h1) and (h2). This movement is 
controlled based on the path determined using the distance to 
the shelf calculated in Fig. 4(a1). By following this series of 
processes, the robotic arm performs the disposal of products. 

B. Mobile Robot Navigation 

To navigate our robot, we used navigation package [13], 
released as a ROS package. The robot builds an environmental 
map using gmapping [14], which performs SLAM based on 
odometry and point cloud information from a 2D LiDAR.  The 
size of competition field is shown in Fig. 5(a), and an 
environmental map constructed at the competition is shown in 
Fig. 5(b). Autonomous navigation is performed based on 
Navfn [15] for global path planning and Dynamic Window 
Approach [16] for local path planning. As the robot moves, it 
follows the generated path. There is no need for local 
alignment, such as referencing markers as the robot moves. 
For localization, we use amcl [17], which estimates self-
location based on scan data from the 2D LiDAR and odometry 
information. The position coordinates of the robot's 

destination, such as the front of the shelf, are set as ①~④ in 

Fig. 5(b) in advance. In the competition, the robot must first 
move to a workable position in front of the shelf where it is to 
task. When the robot moves to the front of the shelf, it goes 

 

Figure 4.  The process of product disposal using a robotic arm. 



  

from the initial position ① through ② to the front of the target 

shelf ③. ② is a transit point, established to make it easier to 

plan the path to the front of the target shelf. When the System 
Manager receives a flag indicating that the task of the robotic 

arm is finished, the mobile manipulator returns from ③ to ① 

via ②. Table I shows the values of the navigation parameters. 

These parameters are related to path planning and robot 
motion. The parameter values are determined empirically, as 
it is difficult to reach the destination with the default values of 
the navigation package. 

C. Customer Approaching Detection 

In the stock and disposal task, it is necessary to do the 
avoidance action that considers the direction from which 
customers are coming because the width of the aisle is narrow. 
In this paper, we use the Single 3D LiDAR-based Moving 
Object Extraction system (S3L-MOE system) [11] to detect 
humans. This system achieves real-time human detection 
without the need for a learning process. Three-dimensional 
point clouds obtained every 0.1 seconds from a single 3D-
LiDAR unit are projected onto cells of a two-dimensional grid 
map, and moving objects are extracted by background 
subtraction. By storing the positions of all objects in the 
environment, the relative positions of objects can be acquired 
in real time. It is also possible to track people by assigning an 
ID to each person, thereby enabling recognition of customers 
and detection of the direction of approach within a store. 

The following procedure is used for human detection in 
this system. First, the system detects the position of a 
stationary object that serves as a background for an arbitrary 
time in an unoccupied environment. In this study, the 
background was detected in 2 minutes of measurement. Next, 
the background is subtracted from the scan data, and the point 
cloud is divided by clustering to extract moving objects. 
Finally, a moving object is detected as a person if the number 
of cells occupied by the moving object 𝑁𝑀𝑂𝑐𝑒𝑙𝑙

 satisfies 

2 ≤ 𝑁𝑀𝑂𝑐𝑒𝑙𝑙
≤ 50 (1) 

and the average position of the point cloud is calculated as the 
position of the person. The person is identified by the ID 
assigned to each moving object. 

The following procedure is used for customer detection. In 
this system, the mobile manipulator is large and is likely to be 
detected as a human. Since the mobile manipulator and clerks 
start their work from the stock room, the system recognizes a 
person who accesses the stock room shown in Fig. 6 as clerks 
or the mobile manipulator. By storing the IDs of the clerks and 
the mobile manipulator 𝐼𝐷𝑐𝑙𝑒𝑟𝑘, the system detects customers. 

𝐼𝐷𝑐𝑙𝑒𝑟𝑘 = {
𝐼𝐷𝑝𝑒𝑟𝑠𝑜𝑛𝑖

, if 𝑝𝑒𝑟𝑠𝑜𝑛𝑖  is in the stock room,

0, otherwise.
(2) 

𝐼𝐷𝑝𝑒𝑟𝑠𝑜𝑛𝑖
 represents the ID assigned to any person 

𝑝𝑒𝑟𝑠𝑜𝑛𝑖 . The following procedure is used to detect the 
direction of approach. When a customer comes within the 
three areas shown in Fig. 6, which are determined based on 
the position of the target shelf, the direction of the 
customer's approach is sent to the mobile manipulator as a 
flag. The flag sent to the mobile manipulator 
𝐹𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

 is calculated by the following equations. 

𝐹𝑟𝑖𝑔ℎ𝑡𝑠ℎ𝑒𝑙𝑓
= {

1, if 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑖  is in red area in Fig. 6,
0, otherwise.

(3) 

𝐹𝑐𝑒𝑛𝑡𝑒𝑟𝑠𝑒𝑙𝑓
= {

2, if 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑖  is in yellow area in Fig. 6,
0, otherwise.

(4) 

𝐹𝑙𝑒𝑓𝑡𝑠𝑒𝑙𝑓
= {

4, if 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟𝑖  is in blue area in Fig. 6,
0, otherwise.

(5) 

𝐹𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟
= 𝐹𝑟𝑖𝑔ℎ𝑡𝑠ℎ𝑒𝑙𝑓

+ 𝐹𝑐𝑒𝑛𝑡𝑒𝑟𝑠𝑒𝑙𝑓
+ 𝐹𝑙𝑒𝑓𝑡𝑠𝑒𝑙𝑓

(6) 

The above procedure allows the mobile manipulator to 
know the direction in which a customer is coming, even when 
multiple customers are approaching. For example, when 
𝐹𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟

= 5 , it means that customers are 

approaching from both sides of the target shelf. 

Based on the flag calculated by (6), the mobile manipulator 
performs the avoidance action. When avoiding a customer, the 
mobile manipulator provides information by voice and asks 
the customer to leave. After confirming that there is no 
customer in the yellow area in Fig. 6, the mobile manipulator 

 

Figure 6.  The map drawn by using S3L-MOE system: The red rectangle 

shows a customer detection right side of the shelf. The yellow rectangle 

shows a customer detection in front of the shelf. The blue rectangle shows a 

customer detection left side of the shelf. The red circles show the person’s 

positions in the shop. The number in the upper right of the red circle shows 

the ID of each person. 

 

Figure 5.  An environmental map constructed at the competition. 

TABLE I.  THE VALUES OF THE NAVIGATION PARAMETERS 

Parameter name Value 

foot_print [m] [0.468, 0.345] [0.468, -0.345] 

[-0.468, 0.345] [-0.468, -0.345] 

infration_radius [m] 0.05 

xy goal tolerance [rad] 0.05 

yaw_goal_tolerance[m] 0.05 

fake_foot_print [m] [0.468, 0.22] [0.468, -0.22]  

[-0.468, 0.22] [-0.468, -0.22] 

 



  

starts moving from ③ to ④ in Fig. 5, and then moves to ②. 

When no more customers are detected in front of the shelf, the 

mobile manipulator moves from ② to ③ and resumes its work. 

IV. EXPERIMENTAL RESULTS 

We have verified that each system works in an integrated 
manner via System Manager. This paper analytically verifies 
the performance of each system to clarify its performance. 

A. Robotic Arm Control 

Disposal experiments were performed using three items 
commonly used in the competition: rice balls, sandwiches, and 
orange juices. A total of 10 grasping experiments were 
performed for each object. The evaluation consisted of two 
aspects: object recognition success rate and disposal success 
rate. The object recognition success rate was determined as the 
percentage of successful cases where the centroid of the object 
was calculated. The disposal success rate was calculated as the 
percentage of cases where the robot successfully disposed the 
object. The results are presented in Table II. 

B. Mobile Robot Navigation 

We conducted simulations and real-world validations 
within an environment model resembling the competition 
arena (Fig. 5(a)). The objective was to verify whether the robot 
could successfully approach the target shelf and execute tasks. 
For our robot to comfortably pull out the shelf, it is necessary 
for the robot to position where the robot's center-to-shelf 
distance is within 0.5 meters. Throughout the validation, we 
conducted 10 trials and assessed the success rate by examining 
cases in which the robot's center-to-shelf distance was less 
than 0.5 meters upon reaching the forefront of the shelf. 

The simulation validation indicated that the robot couldn't 
reach the front position of the shelf. As a result, we carried out 
additional validation by modifying the robot's footprint 
parameter, which influences path generation and tracking 
within the navigation system. We reduced the size of the 
robot's footprint to be smaller than that of the actual robot, 
equivalent to the fake_foot_print in Table I. Table III shows 
the results. 

C. Customer Approaching Detection 

To validate the effectiveness of the customer detection 
method, experiments were conducted in the same environment 
as Mobile Robot Navigation experiment. The evaluation 
consisted of the following three aspects: recognition rate of 
person detection, time taken from receiving the customer 
detection flag in the System Manager (Fig. 3) to playing the 
avoidance prompt audio ( Timeaudio ), time taken from 
receiving the customer detection flag in the System Manager 
(Fig. 3) to the robotic arm being in a state capable of avoidance 
(Timeavoid). Table IV shows the experimental results. 

V. DISCUSSION 

A. Robotic Arm Control 

The success rates of object detection exceeded 90% in all 
cases. In case the orange juice was not detected, the captured 
image from the camera was shown in Fig. 7(a). The cause of 
this could be attributed to insufficient training of YOLACT. 

The common cause of disposal failure across all objects 
was the discrepancy between the centroid calculated from the 
image and the actual centroid, which is taken as the centroid 
of the object's bottom surface. When using YOLACT, the 
contour of all sides composing a single object visible in the 
image is obtained (Fig. 7(b)). Consequently, due to variations 
in how the object is perceived, differences arise between the 
image processed centroid and the centroid of the object's 
bottom surface. This discrepancy causes, even if the robotic 
arm was controlled to the target position, the object would be 
off-center from the hand’s center, leading to unsuccessful 
grasping. 

In the case of the orange juice, when the product was 
placed upright, as shown in Fig. 7(c), the object shifted from 
the gripper's center, causing inaccurate depth detection from 
the RGB-D camera. It caused the product to be crushed. 

Furthermore, for sandwiches, the grasp position differed 
from the intended position due to the result of PCA. This 
occurred because the inclined part of the sandwich was 
projected onto a 2D plane when viewed from the top, causing 
it to be identified as the second principal component (Fig. 7(d)). 

TABLE II.  DISPOSAL EXPERIMENTS USING THE ROBOTIC ARM. 

Object Object detection success rate [%] Disposal success rate [%] 

Rice ball 100 70 

Sandwich 100 40 

Orange juice 90 50 

TABLE III. COMPARISON EXPERIMENT OF PATH PLANNING USING SIMULATION AND ACTUAL ROBOT. 
 

Virtual Environment Actual Environment 
Footprint Actual Size Fake Size Actual Size Fake Size 

Number of Arrivals 0 10 3 10 
Success Rate 0 [%] 100 [%] 10 [%] 60 %] 

TABLE IV.   EXPERIMENT ON CUSTOMER DETECTION IN A SIMULATED COMPETITION ENVIRONMENT. 

 Timeaudio Timeavoid 

Customer Detection Success Rate Average  Standard Deviation Average  Standard Deviation 

100[%] 2.71[s] 1.97[s] 26.95[s] 5.06[s] 

 



  

In the future, we are considering using a 6 DoF pose 
estimation method to improve the accuracy of centroid 
calculation and enhance the success rate of grasping. By 
deriving the centroid from the 6D pose, more precise control 
target values for the robotic arm can be obtained, allowing for 
the pre-specification of grasp positions for each object. 
However, when we used the current proposed 6D pose 
estimation method as a test, such as Gen6D [18], achieving 
high accuracy has not been confirmed. Therefore, by pre-
defining the robotic arm's posture for 6D pose estimation, the 
accuracy of 6D pose estimation can be improved, making it 
feasible for practical use in real-world environments. 

B. Mobile Robot Navigation  

In this verification, the number of times the robot reached 
the task position was improved when the foot_print parameter 
was reduced, regardless of whether the robot was used in 
simulation or on the actual machine. This is because a smaller 
foot print parameter allows more movements in the motion 
plan, even near obstacles such as shelves. Also, there were 
some cases in which the robot reached the task position in the 
case of the actual environment experiment but did not meet the 
requirements. This occurred because of odometry errors 
caused by slipping the mobile robot's wheels. The main reason 
for the wheel slip is thought to be due to the heavy load of the 
robot. 

In the future, we expect to improve the success rate without 
adjusting the size of the footprint by navigating to the 
periphery of the work area and adjusting the position in detail 
by feeding back the information from the self-position 
estimation by the on-board 2D LiDAR and so on. Moreover, 
the mobile robot we used needs to be reconsidered, since 
slipping during movement makes it difficult to control. 

C. Customer Approaching Detection 

In this verification, the success rate of customer detection 
was 100%. This indicates that the S3L-MOE system was 
working properly. The mean time of Timeaudio took 2.714[s]. 
The standard deviation was 1.97[s], showing a large variation. 
This is because the customer approached the robot when it 
could not immediately halt its motion sequence due to the 
middle of the task execution. 

In the future, we believe that the average time to the audio 
presentation and avoidance can be shortened, and the variation 
in avoidance time can be reduced by subdividing the motion 
processing of the robot arm and shortening the cycle for 
receiving the customer detection flag. 

VI. CONCLUSION 

This paper presents a proposal and technical challenge for the 
Stock and Disposal task at the World Robot Summit. We 
proposed a mobile manipulation system that disposes of 
merchandise as environmentally independent as possible. We 
proposed a robot arm that disposes of merchandise on a simple 
sliding shelf without markers on the merchandise, an approach 
in which the mobile manipulator is not controlled by markers 
and moves to avoid customers even while traveling, and a 
customer detection method that includes the direction of 
approaching customers using only one sensor that can be 
freely placed inside the store. Each approach was verified in 
an environment that simulates the real environment. Future 
work will focus on product disposal by manipulation using 6-
DoF posture estimation method, detailed position adjustment 
of mobile robots using feedback of self-position estimation 
information, and reduction of response time until customer 
avoidance behavior is achieved. 
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