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Abstract— This study introduces a cost-effective measure-
ment approach for indoor environments, intended for inspection
purposes for autonomous mobile robotics and infrastructure
maintenance. The method involves utilizing a spherical camera
capable of capturing 360 degrees view of the surroundings,
along with a ring laser, to obtain a 3D point cloud representing
a cross-section of a room through the structured light method.
The camera and laser rotated 360 degrees in the target envi-
ronment. The camera’s orientation is established by comparing
the distribution of line features within the room to the three
directions in real space. By considering the extent of change
in the camera’s posture, the method integrates multiple point
clouds generated by the structured light method. This results in
the creation of a comprehensive 3D point cloud that represents
the entire indoor environment.

I. INTRODUCTION

High-precision 3D measurement technology is extensively
utilized for autonomous robot mobility technology and main-
tenance of large facilities [1]. Self-position estimation for
mobile robots in indoor environments involves correlating
information acquired from cameras and laser scanners with
a preexisting environmental map [2][3]. To achieve precise
position estimation, it is important to have a highly accurate
three-dimensional map. In maintenance, verifying the correct
production of buildings and large products is essential.
However, these tasks are typically performed by humans
and are both time-consuming and costly. To achieve efficient
quality control, acquiring detailed 3D data on the work sur-
face is imperative. Currently, various methods and devices,
including omni-directional 3D measurement techniques, are
employed. One of these sensor is a LiDAR sensor[4], which
measures distance and shape using Time-of-Flight (ToF), by
irradiating a light pulse onto an object and measuring the
time of a light pulse trip. However, in medium- to short-
range environmental sensing, such as indoor environments,
the time of a light pulse trip is shorter, and results in lower
measurement accuracy. Another disadvantage is the relatively
high price of the device itself. Consequently, the demand for
accurate and budget-friendly 3D measurement devices is on
the rise.

There is a study on 3D measurement in indoor envi-
ronments using a combination of spherical cameras and
structured light method using a ring laser[5]. This method
involves fusing the 3D point cloud obtained through the light
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Fig. 1. Three vanishing points [8]

cutting method with the camera pose information obtained
through Structure-from-Motion (SFM) [6] techniques. How-
ever, this approach is sensitive to the textures present in the
indoor environment, and a lack of textures can adversely
affect the accuracy of SFM-based pose estimation and 3D
measurement. Additionally, there are studies that utilize a
spherical camera for pose estimation, where they match the
straight line information in the images with the pre-prepared
3D model of the space [7]. They describe the straight
line information on the floor, walls, and other surfaces in
the images, as well as the 3D model, as descriptors. By
comparing these two sets of descriptors, they calculate the
camera’s position and orientation when the images were
captured. However, it is necessary to prepare an accurate
3D model in advance.

In this study, we propose a 3D measurement method
using a spherical camera and a ring laser that is suitable
for textureless environments. This method improves upon
previous camera pose estimation processes. Specifically, we
obtain a point cloud of a cross-sectional indoor area using a
camera and a laser with the the structured light method. Si-
multaneously, we estimate the camera’s orientation, and then
we integrate multiple laser point clouds based on the amount
of rotation. To estimate the camera’s pose, we assume that
even in an indoor environment with few patterns, the edges
of walls and ceilings can be acquired. Therefore, we focus
on the line features in the environment for camera pose
estimation. Our method is based on the Manhattan world
hypothesis [8], assuming that all straight lines lie in one of
three principal directions, which are perpendicular to each
other. Consequently, all lines are oriented in three directions,
corresponding to the three vanishing point directions in real
space as shown in Fig.1. By calculating the vanishing point’s
direction in real space from the line distribution in the



image and comparing it with the camera coordinate system’s
direction, we can estimate the camera’s attitude relative to
the real space. With this approach, we can accurately obtain
3D information of an entire indoor space using only the
prior knowledge that straight lines in the indoor space are
perpendicular to each other.

Furthermore, to achieve precise orientation estimation, it is
crucial to acquire three-way linear information of the indoor
area, regardless of the camera’s orientation. To address this,
we utilized a spherical camera in this study, as it can capture
360 degrees view around the object.

II. PROPOSED METHOD

A. Overview of the Measurement Setup

The overall measurement setup is shown in Fig.2. The
setup involves a single fisheye camera and one circular
laser attached to a tripod. The measurement process involves
rotating the entire setup vertically around the camera’s center
as the axis while conducting the measurements. The mea-
surement device itself remains fixed at an arbitrary position
from the start to the end of the process.

B. Overview of the Proposed Method

The proposed method consists of a process of 3D measure-
ment and a process of pose estimation, as shown in Fig.3. At
a single camera position, two images are captured: one show-
casing the laser-illuminated scene and the other representing
the room itself. Concerning the 3D measurement, the laser-
projected image is utilized to extract pixels corresponding
to the laser. Employing the light sectioning technique, a
3D point cloud capturing the cross-sectional structure of the
room is generated.

Next, we focus on estimating the camera’s pose Utilizing
deep learning, line features are extracted from the room
image. By executing plane fitting on these line features,
alterations in the camera’s orientation are computed. These
two processes are iteratively executed while incrementally
rotating the camera within the indoor environment. Using the
poses of each camera, the 3D point clouds obtained from all
frames are integrated, resulting in the creation of a unified
3D point cloud representation of the entire indoor space.

Fig. 2. Measuring setup

C. 3D Measurement

A omnidirectional image showing the laser projection area
is captured with a spherical camera. A binary processing is
applied to the image, where the red laser area is assigned
a pixel value of 255, while the rest is set to a pixel value
of 0. Subsequently, the weighted centroid position of the
circular laser projection is computed. Taking into account
the characteristic circular shape of the laser light in the
binary image, a weighted average is calculated in the u and
v directions of the image. The combined coordinates of the
centroid positions in the u and v directions are regarded as
the centroid position of the circular laser projection as shown
in Fig.4. Then, utilizing the weighted centroid image and the
geometric relationship between the fisheye camera and the
circular laser, a 3D point cloud is reconstructed.

D. Concept of Pose Estimation

Fig.5 show the indoor environment and the camera co-
ordinate system. Based on the Manhattan World hypothe-
sis,[3] all the lines indoors face three orthogonal directions.
Therefore, these three directions are defined as the world
coordinate system. By comparing the direction of the straight
lines in the image taken by the rotating camera and the
direction of the camera coordinate system, the change in the
camera’s posture relative to the world coordinate system can
be obtained. Therefore, we perform posture estimation using
the straight lines in the indoor environment as the feature
values.

E. Line Features Extraction

Unified Line Segment Detection (ULSD) [9] based on
deep learning detects straight lines in a positively curved
a omnidirectional image captured by a spherical camera.
ULSD utilizes an end-to-end network to perform line seg-
ment detection using the Bezier curve model. This detection
approach can accommodate both undistorted perspective
projection images and distorted images captured by fisheye

Fig. 3. Flow of the proposed method

Fig. 4. Extraction of laser light



or spherical cameras. The input image is represented as the
indoor scene image shown in Fig. 6(a). The resulting image
after line detection is showing in Fig.6(b), where the orange
regions represent the detected line areas, and the cyan dots
denote the endpoints of the detected lines.

Straight lines within the omnidirectional image can be pro-
jected onto the circumference of a 3D spherical coordinate
system, as shown in Fig.7. Furthermore, the normal vectors
of the straight lines, projected onto the spherical coordinate
system and pointing in the same direction, possess the prop-
erty of lying on the same plane. In other words, by analyzing
the normal vectors, the orientation of the world coordinate
system in space can be determined. Therefore, unit normal
vectors are defined as line features. The relationship between
the 3D spherical coordinate system’s lines and the normal
vectors as line features is illustrated in Fig.6. The specific
procedure for pose estimation is outlined below.

• The line in the image is converted to 3D coordinates on
the unit sphere.

• The unit normal vector, n12 of a line is obtained by
randomly selecting two points, p1 and p2, from the
point set of the line and computing the outer product.

F. Plane Fitting for Estimation Camera Pose

In this study, we assume an environment where all lines
in space are oriented in three orthogonal directions. As a
result, the normal vectors of the lines can be classified
into three planes. As shown in Fig.8, as the camera’s pose
changes, both the distribution of lines in the omnidirectional
image and the distribution of unit normal vectors change
accordingly. Thus, by fitting the three planes of the camera’s
coordinate system and the three planes of the unit normal
vectors, the camera’s pose with respect to the world coordi-
nate system can be determined. Specifically, we employ the
Levenberg-Marquardt method [10] to obtain a rotation matrix
that minimizes the distance errors between these planes.

Let nk(k = 1, 2, ..., n) represent the unit normal vectors,
and Wl(l = 1, 2, ..., n) denote the three axes of the world
coordinate system. The camera attitude change is expressed
by a rotation matrix R sing Euler angles (α, β, γ) The
distance dkl between nk is defined as the absolute value of
the inner product in (1).

dkl = |nk ·R ·Wl| (1)

Fig. 5. Coordinate system

(a) Room image

(b) Line image

Fig. 6. Line detection using ULSD

Fig. 7. Definition of line features

For each normal vector, the smallest of the three inner
product values is represented as dk in (2).

dk = min(dk1, dk2, dk3) (2)

The parameters (α, β, γ) that minimize the inner prod-
uct values of all normal vectors are calculated using the
Levenberg-Marquardt method, as shown in (3).

(α, β, γ) = argmin
α,β,γ

n∑
k=1

d2k

The amount of rotation refers to the extent of attitude
change relative to the world coordinate system of the indoor
environment, as depicted in Fig.3. Using the calculated
rotation matrix, the 3D point clouds from multiple laser
beams can be fused together, enabling the measurement of
the entire indoor environment’s shape.

III. SIMULATION EXPERIMENT

The simulation experiment environment was set to a low-
texture indoor scene [11] in the 3D computer graphics
integrated development environment Blender, as shown in
Fig.9. In the simulation environment, the true values of
camera rotation and distance to the measurement target can
be obtained, enabling quantitative evaluation.

The input images had a resolution of 1920×960. The cam-
era was placed indoors in a way that the image center was



Fig. 8. Change in line features after camera pose change

Fig. 9. Indoor room

aligned with one direction in the world coordinate system.
The rotation axis was set to be only in the vertical direction,
and the rotation per cycle was set to 5 degrees. The camera’s
pose was rotated 72 times to cover a complete 360 degrees
view around the environment. The results of the simulation
experiment were evaluated in two aspects: the variation in
camera pose and the accuracy of 3D measurement.

A. Rotation Results

Quaternion rotations were calculated to assess the camera
pose estimation based on linear features. The estimation
results are presented in Table 1. The error angle was obtained
by subtracting the estimated angle from the true value of
the quaternion angle, and the standard deviation of the error
angle for the 72 measurements was 1.31 degrees. This error is
primarily caused by the process of extracting straight lines in
the omnidirectional image of the room using deep learning.
The results of the straight-line detection in Fig.6(b) indicate
that the output image includes a detected straight line at
a position that deviates from the actual room edge. This
can be interpreted as an incorrect camera posture estimation,
representing a failure in the process.

B. 3D measurement results

Fig.10(a) displays the point cloud of the entire room
fused based on the known camera posture, while Fig. 10(b)
shows the result using the proposed method. To evaluate the
impact of the posture estimation result on the fusion of the
3D point cloud, we utilized the 3D point cloud processing
software Cloud Compare. The direction vector of the wall
plane at 1.93 meters from the camera, which is sensitive
to the amount of vertical rotation, and the plane error are
calculated and shown in Table 2. The true value of the
direction vector is (1,0,0), and the plane error represents

(a) True rotation (b) Estimated rotation

Fig. 10. The point cloud of the entire blender room

the standard deviation of the distance error of each point
group from the estimated plane. The results are depicted in
Fig.11, which shows the point clouds for plane estimation,
and Fig.12, which displays the resulting planar area.

Fig.10(b) indicates that the 3D point cloud in the room
matches the Blender model, demonstrating the effectiveness
of the proposed method. However, even with the known
camera pose estimation, the direction vectors are not pre-
cisely (1,0,0) as expected. Instead, they are measured as
(1.00, 6.20× 10−3,−0.54× 10−3), leading to a plane error
value of 23.4 mm. The reason for this error in the known
amount of rotation case is attributed to the distortion of the
omnidirectional image. This because of characteristics of a
spherical camera. Consequently, the upper and lower portions
of the image, such as the floor and ceiling in Fig.6(a),
are projected with stretching. This stretching effect also
occurs when the laser-irradiated area is projected onto the
omnidirectional image, potentially affecting the calculation
of the laser’s weighted center of gravity.

Comparing the results between the case where the amount
of rotation is already known and the case where the amount
of rotation is estimated, the error value of the direction vector
and the plane error are larger in the latter case. This can be
attributed to errors in the camera’s orientation estimation, in
addition to the distortion of the omnidirectional image.

TABLE I Quaternion rotations

Frame True angle [°] Estimated angle [°] Error angle [°]
1 0.00 0.812 -0.812
2 5.00 5.48 -0.483
3 10.0 9.98 -0.0674
4 15.0 15.5 -0.512
5 20.0 17.8 2.20
6 25.0 24.5 0.471
7 30.0 29.3 0.729
8 35.0 34.4 0.611
9 40.0 43.3 -3.34

10 45.0 45.2 -0.210

TABLE II Quaternion rotations

Rotation Normal vector
Planar

deviation
True (1.00,6.20× 10−3,−0.54× 10−3) 23.4 [mm]

Estimated (1.00,8.13× 10−3,−1.51× 10−3) 39.9 [mm]



(a) True rotation (b) Esttimated rotation

Fig. 11. Point cloud of a plane

(a) True rotation (b) Esttimated rotation

Fig. 12. Estimated plane area

IV. EXPERIMENTS IN A REAL-WORLD ENVIRONMENT

The experimental environment and measurement devices
are shown in Fig. 13. The experiment was conducted in
Room 2629 at the Korakuen Campus of Chuo University.
The experimental apparatus is a RICOH THETA X and a
19.6mW ring laser. The measurement method is the same
as in the simulation experiment. In this chapter, we only
describe the results of the 3D measurements.

A. 3D measurement results

Fig.14(a),(b) shows the point cloud of the entire room
from two viewpoints. Considering the shape of the room to
be measured, it is clear that the point cloud is not correctly
reconstruceted. The reason for this is that the positional rela-
tionship between the camera and the laser is not accurately
acquired. Currently, the point cloud is calculated using an
approximate positional relationship based on the dimensions
of the measurement device. It is necessary to calibrate the
distance and posture of the camera and laser.

V. CONCLUSION

We proposed a method for 3D measurement of indoor
environments using a fisheye camera and circular laser
projection. By focusing on lines in the images, it becomes
possible to estimate camera poses even in textureless spaces,
and multiple laser point clouds can be fused. Utilizing the
characteristics of the fisheye camera, the normal vectors
of lines in spherical coordinates were calculated, defining
them as line features. The distribution of these line fea-
tures changes as the camera’s pose varies. The amount of

Fig. 13. Room 2629 and measurement device

(a) Oblique viewpoint (b) Side viewpoint

Fig. 14. The point cloud of the entire room 2629

this change was computed using the Levenberg-Marquardt
method to estimate the camera’s pose. Simulation experi-
ments were conducted using Blender to evaluate the change
in camera pose and the plane estimation of 3D point clouds.
This confirmed the effectiveness of the proposed method.

While this study utilized deep learning for line extrac-
tion, it was observed that the accuracy of this detection
affected the accuracy of camera pose estimation. Therefore,
for further improvement in accuracy, combining methods
like the Canny edge detection [12] alongside deep learning
could enhance the line extraction process. In addition, good
results have not been obtained in real-world conditions. A
calibration method needs to be devised to determine the exact
positional relationship between the camera and the laser.
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