
  

  

  

Abstract— In this paper, we propose a novel method for 

obstacle detection and height estimation based on disparity and 

intensity information using a fisheye stereo camera. The method 

using only disparity information may incorrectly detect road 

surfaces as obstacles. Therefore, the proposed method detects 

obstacles by comparing the intensity of the obstacle edges with 

that of the disparity information. Experimental results show that 

the proposed method using disparity and intensity information 

can detect only obstacles without incorrectly detecting road 

surfaces. It is also shown that the accuracy of the height 

estimation does not change even though the road surface is not 

detected incorrectly. 

I. INTRODUCTION 

In recent years, there have been remarkable advances in 
automated driving technologies, and many of these 
technologies have already been put to practical use. Among 
them, many driver assistance systems are in widespread use. 
These systems support driving based on three-dimensional 
(3D) information of the surroundings measured by range 
sensors such as LiDAR and stereo cameras. To determine 
whether assistance is required, it is necessary to understand the 
environment surrounding the vehicle. Among the range sensors 
used to understand the environment surrounding a vehicle, 
stereo cameras are used to understand the surrounding 
environment in detail due to their ability to acquire color 
information and high measurement density, and various 
methods for understanding the environment have been 
proposed [1]-[6]. 

The methods for recognizing the environment using stereo 
cameras include estimating the road surface area and extracting 
obstacle regions using geometric conditions and 3D point 
clouds, and detecting the location of obstacles based on the 
color information from a monocular camera. Methods for 
estimating the road surface area and extracting obstacles 
include the projection matrix method [1] and the UV-disparity 
method [2][3]. A method using projection matrix cannot 
estimate the road surface correctly when the road surface 
cannot be approximated by a single plane, such as in an 
environment where the slope changes in the middle of the road. 
A method using UV-disparity has been proposed to estimate 
the road surface area and extract obstacles to understand the 
environment. However, this method assumes that the roll angle 
of the camera is 0°, so it cannot estimate the road surface 
correctly when the camera tilts. There have been many studies 
on using deep learning [4]-[6] as a method to understand the 
environment by detecting obstacles based only on color 

 
1 Precision Engineering Course, School of Science and Engineering,  

Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan 

(Corresponding author: chikugo@sensor.mech.chuo-u.ac.jp) 
 

information in images. However, deep learning suffers from 
the difficulty of adapting to environments that differ from the 
data used for training, and from low explainability, i.e., the 
inability to explain the cause of failures when they occur. 

All of the above methods use regular stereo camera, and the 
narrow field of view of the range image sensor results in a 
narrow measurement range. Sakuda et al. proposed a method 
for obstacle detection and height estimation corresponding to 
changes in slopes using a fisheye stereo camera with a wide 
range of measurement [7, 8]. However, this method sometimes 
incorrectly detects road surfaces as obstacles because it uses 
only distance information when there is a measurement error. 
Therefore, in this study, we propose a method to detect only 
obstacles without false detection of road surfaces by 
considering intensity information. The obstacle region 
extraction is performed again by focusing on the area where the 
edge of the obstacle overlaps with the obstacle region obtained 
by disparity information and comparing the intensity 
information in the surrounding area. 

II. PROPOSED METHOD 

A. Outline of Proposed Method 

Fig. 1 shows an overview of the proposed method. The 
method is devided into three main areas: 3D measurement, 
road surface plane estimation, and obstacle classification. 3D 
measurement is performed using a pseudo-bilateral filter [9]. 
Road surface plane estimation involves preprocessing, fitting 
of multiple planes, and extraction of the road surface area. 
Obstacle classification involves extraction of obstacle regions, 
statistical processing, and estimation of the height of each 
obstacle. In this study, we propose an algorithm that considers 
intensity information in addition to disparity for extracting 
obstacle regions. 

B. 3D Measurement using Pseudo-Bilateral Filters 

In this 3D measurement, the 3D information obtained by 
the area-based binocular stereo camera is fused with the feature 
point-based 3D information obtained by Structure from Motion 
(SfM) to achieve a dense and accurate range image 
measurement. The weighting is based on the distance between 
the pixel of interest and its surrounding feature points, and the 
difference between the disparity of the pixel of interest and the 
disparity of its surrounding feature points. The pseudo-bilateral 
filter performs SfM on three pairs of images from a total of four 
images obtained before and after the motion from the left and 
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right cameras to obtain sparse but highly accurate 3D 
information. The orientation of the baseline length differs for 
each pair. Since the distance accuracy varies greatly depending 
on the orientation of the baseline length, we weight each SfM 
pair considering the orientation of the baseline length in 
addition to the weights described above [9]. 

Fig. 2 shows the conversion from a fisheye image to an 
equirectangular image. 3D measurement using a fisheye 
camera is adversely affected by the distortion inherent in 
fisheye images. To reduce this effect, the image is converted to 
an equirectangular image before measurement [10]. 

C. Estimation of Road Surface Plane 

In road surface plane estimation, the road surface plane 
parameters are obtained by segmenting the disparity images 
measured in Section Ⅱ (B). As shown in Fig. 3, limited 
expansion is performed multiple times with large values of 
vertical coordinates, and the areas are compared. The area with 
the largest area because of the comparison is the road surface 
area [7, 8]. 

D. Extraction of Obstacle Regions using Disparity 

The obstacle region is extracted from the road surface 

planes obtained in Section Ⅱ (C). The road surface may not be 

estimated at the points corresponding to the obstacle region. 

Therefore, the plane parameters in such areas are estimated 

using the average of the plane parameters in the road surface 

area near the obstacle region. Points where the difference in 

disparity from the estimated road surface is greater than a 

threshold value are considered obstacles. A binary image is 

generated, where 1 is the location where the obstacle exists 

and 0 is the location where the obstacle does not exist. 

Hereafter, this image is called a candidate point image. 

E. Extraction of Obstacle Regions using Intensity 

As described in Section Ⅰ, the conventional method uses 

only distance information, which may result in incorrect 

detection of road surfaces when there is a measurement error. 

Therefore, an algorithm for obstacle region extraction using 

intensity information is added to the algorithm for obstacle 

region extraction using disparity information described in 

Section Ⅱ (D). A flowchart of this algorithm is shown in Fig. 

4. The additional algorithm focuses on the overlapped region 

between the edge of the obstacle and the obstacle region 

obtained from the disparity information. If the overlapped area 

is small, it is removed as noise by the statistical process in 

Section Ⅱ (F). Therefore, the overlapped region is surrounded 

by a bounding box, and the intensity is compared within the 

bounding box. Then, the obstacle region is extracted again. 

The procedure is shown below. 

• Step 1) Edges are extracted from the equirectangular 
image measured in Section Ⅱ (B). First, a bilateral 
filter is applied to the equirectangular image to smooth 
it. Next, a Laplacian filter is applied to extract the 
edges of obstacles while suppressing the extraction of 
road surface edges by binarization and expansion. 

• Step 2) The area where the obstacle region obtained in 
Section Ⅱ (D) and the edge obtained in Step 1 overlap 
is considered likely to be an obstacle. Therefore, the 
area where they overlap is the obstacle region. 

• Step 3) Considering connectivity, the obstacle region 
obtained in Step 2 is enclosed by a bounding box. 
However, when there is a wall and a person, as shown 
on the left in Fig. 5, the obstacle region obtained in 
Step 2 is surrounded by a bounding box, as shown on 
the right in Fig. 5, because the processing is performed 
on a binary image. Then, if the intensity of an obstacle 
such as a wall or a person is similar to that of the road 
surface, the road surface becomes an obstacle region. 
Therefore, the image is divided into 64 segments and 
the obstacle region is surrounded by the bounding box. 
The number of segments was determined 
experimentally. 

 

Figure 1.  Equirectangular image 

 

Figure 2.  Road area extraction in disparity image 

 

 

Figure 3.  Flow of proposed method 



  

• Step 4) The intensity is compared within each 
bounding box. The intensity of the obstacle region 
obtained in Step 2 is compared with the intensity in the 
surrounding area. If they are similar, the area is defined 
as the obstacle region. The surrounding area is an 
obstacle region if the difference in intensity between 
the obstacle region and its surrounding region obtained 
in Step 2 is within ±5. This intensity threshold was 
determined experimentally. 

F. Statistical Processing 

Clustering is performed on the images obtained in Section 

Ⅱ (E), where the connected regions are considered as one class. 

However, since the distance from the camera is not considered, 

they are clustered as the same obstacle due to occlusion and 

so on. Therefore, the classes are divided again by considering 

the distance from the camera. For each class, if there are more 

than a threshold number of points with similar distance values, 

the region is a class. If the similar distance points are less than 

the threshold, the class is considered as noise and removed. 

G. Obstacle Height Estimation 

Calculate the height of each class as a single obstacle. 

 

𝐻 =
|𝑎𝑋 + 𝑏𝑍 + 𝑐𝑌 − 𝐵|

√𝑎2 + 𝑏2 + 𝑐2
(1) 

 
is calculated at the points included in the class, and the 

maximum value is the obstacle height for that class. Here, 

(𝑎, 𝑏, 𝑐 ) are the planar parameters, 𝐻  is the height of the 

obstacle, (𝑋, 𝑌, 𝑍 ) are the 3D coordinates, and 𝐵  is the 

baseline length of the fisheye stereo camera. 

III. EXPERIMENTS FOR ACCURACY EVALUATION 

A. Experimental Conditions 

In this experiment, a 0.31m high cardboard was used as an 

obstacle. We verified that the proposed method could detect 

only the obstacle without incorrectly detecting the road 

surface. We also evaluated the percentage of the cardboard as 

an obstacle was detected, the accuracy of the distance to the 

cardboard, and the accuracy of the height of the cardboard. 

The experimental environment was a flat environment where 

the angle of slope did not change. Fig. 6 shows a conceptual 

diagram of the experiment. The red region represents the 

obstacle and the green region represents the road surface. The 

black region represents the fisheye stereo camera, which 

translates 0.15 m in 1 frame from back to front. The camera is 

tilted at a 30° angle toward the road surface. Fig. 7 shows the 

appearance of the fisheye stereo camera used in the 

experiment. The fisheye camera was a Flea3 from FLIR and 

the fisheye lens was a TV1634M from SPACE. The resolution 

of the camera is 1328 x 1048 pixels, the baseline length is 52 

mm, and the angle of view is 165° horizontally and 132° 

vertically. The obstacle was placed so that the center of the 

obstacle was at azimuth angles of -60°, 0°, and 60°. The 

camera captured 10 images each at distances of 1m, 2m, and 

3m from the obstacle. The distance to the obstacle and the 

number of captures were the same as for the conventional 

method [7, 8]. 

B. Experimental Results 

The experimental results are shown in Fig. 8-12 and Table 

I-Ⅱ. Fig. 8 shows the equirectangular image and the disparity 

image, Fig. 9 and Fig. 10 show the clustered images of 

obstacles and the 3D point cloud display of the obtained 3D 

information with each obstacle distinguished by color. Fig. 11 

shows the average and standard error of the measurement error 

of the distance between the obstacle and the camera. Fig. 12 

shows the average and standard error of the measurement error 

of the obstacle height. Table I and Table Ⅱ show the 

percentage of obstacles detected without false detection of the 

road surface. The brackets show the percentage of detected 

obstacles. Fig. 9 and Fig. 10 show that the conventional 

method can detect obstacles, but it incorrectly detects road 

surfaces in the lower left corner of the image. The proposed 

method detects the obstacles correctly without incorrectly 

including the road area. The obstacle clustered in the upper 

right corner of the image represents a building. The cardboard 

as the obstacle is not detected in its entirety, and only the edges 

of the top surface of the cardboard are detected. However, this 

is not a problem because it is sufficient to detect only a part of 

the obstacle. Fig. 11 and Fig. 12 show that the proposed 

method is as accurate as the conventional method in terms of 

distance and height. The lower accuracy at azimuth 0° 

compared to other azimuth angles is due to the pseudo-

 

Figure 4.  Processing by bounding box 

 

Figure 5.  Experimental condition 

 

 

Figure 6.  Flowchart of obstacle detection by intensity 



  

bilateral filter; the epipolar direction of the SfM is along the 

optical axis, and the measurement accuracy near the center of 

the image is lower. Table I and Table Ⅱ show that the 

conventional method can detect obstacles in almost all 

situations, but it incorrectly detects the road surface in all 

situations. The proposed method was able to detect only 

obstacles in all situations without incorrectly detecting the 

road surface. However, the proposed method failed to detect 

obstacles several times in the experiments at 3m and -60° and 

0°. Fig. 13 and Fig. 14 show the respective images before 

clustering. Fig. 13 and Fig. 14 show that the cardboard region 

was extracted as an obstacle region extraction. However, it is 

considered that they were removed as noise in the statistical 

processing described in Section Ⅱ (F). Also, the processing 

speed was approximately 0.05 fps. Such a processing speed is 

insufficient for automatic driving. In future, we aim to 

improve this processing speed. 

 

IV. CONCLUSION 

In this study, we proposed a method to correctly detect 

obstacles and estimate their height without incorrectly 

detecting the road surface using disparity and intensity 

information obtained from a wide range of dense 3D 

information. Experiments showed that only obstacles can be 

detected without incorrectly detecting road surfaces. The 

proposed method is as accurate as the conventional method in 

terms of distance and height, even though it only detects 

obstacles without incorrectly detecting road surfaces. 

For future works, it is necessary to verify whether the 

proposed method can detect only obstacles by experiments in 

complex environments. It is also important to improve the 

accuracy of 3D measurement using the fisheye stereo camera. 

 

 

(a) Clustering image 

 

(b) Front view of point clouds 

 

(c) Side view of point clouds 

Figure 7.  Clustering results at 1m in conventional method 

 

 

Figure 8.  Fisheye stereo camera 

 

(a) Equirectangular image 

 

(b) Disparity image 

Figure 9.  Images with the cardboard at 1 m 
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(a) Conventional method 

 

(b) Proposed method 

Figure 11.  Standard error in distance with the cardboard 

 

(a) Conventional method 

 

(b) Proposed method 

Figure 12.  Standard error in height with the cardboard 

 

 

(a) Clustering image 

 

(b) Front view of point clouds 

 

(c) Side view of point clouds 

Figure 10.  Clustering result at 1m in proposed method 

 



  

TABLE I.  PERCENTAGE OF THE CARDBOAD DETECTED ONLY IN 
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Distance [m] 
Azimuth angle [deg] 

-60 0 60 
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2 0 (100) 0 (80) 0 (100) 

3 0 (100) 0 (70) 0 (100) 

TABLE II.  PERCENTAGE OF THE CARDBOAD DETECTED ONLY IN 

PROPOSED METHOD (PERCENTAGE OF DETECTED OBSTACLES) 

Distance [m] 
Azimuth angle [deg] 

-60 0 60 

1 100 (100) 100 (100) 100 (100) 

2 100 (100) 100 (100) 100 (100) 

3 100 (90) 100 (80) 100 (100) 
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(a) Equirectangular image 

 

(b) Candidate point image 

Figure 13.  Images with the cardboard at 3 m and 0° 

 

(a) Equirectangular image 

 

(b) Candidate point image 

Figure 14.  Images with the cardboard at 3 m and -60° 

 


