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In this paper, we propose a novel algorithm for esti-
mating road surface shapes and object heights using
a fisheye stereo camera. Environmental recognition is
an important task for advanced driver-assistance sys-
tems. However, previous studies have only achieved
narrow measurement ranges owing to sensor restric-
tions. Moreover, the previous approaches cannot be
used in environments where the slope changes because
they assume inflexible constraints on the road sur-
faces. We use a fisheye stereo camera capable of mea-
suring wide and dense 3D information and design a
novel algorithm by focusing on the degree of division
in a disparity image to overcome these defects. Ex-
periments show that our method can detect an object
in various environments, including those with inclined
road surfaces.

Keywords: fisheye stereo camera, equirectangular im-
age, drivable region, autonomous vehicle, object detec-
tion

1. Introduction

In recent years, active research and development have
been conducted on driver-assistance systems. Driver-
assistance systems use information obtained from various
range sensors (such as sonar and radar sensors) to identify
the surrounding conditions and make driving-assistance
decisions. In particular, 3D light detection and ranging
(LiDAR) and stereo cameras are commonly used to un-
derstand the environment around a vehicle in detail, ow-
ing to their wide measurement ranges. 3D LiDAR sys-
tems have been actively studied owing to their high mea-
surement accuracy, and various environmental measure-
ment methods have been proposed [1-4]. However, 3D
LiDAR is expensive. Moreover, it is unable to view color
information and its low resolution makes it difficult to de-
tect small objects. In contrast, stereo cameras have been
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studied as practical distance sensors because they can also
acquire color information, are inexpensive, and have high
measurement densities [5—16]. Methods for understand-
ing the surrounding environment can be divided into two
categories: ones that estimate the road surface region and
determine the locations of obstacles, and ones that de-
tect objects based on color information. One framework
for estimating road surface planes and objects is to use
UV-disparity [5, 6]. This method compresses information
in the horizontal and vertical directions of the image to
predict the 3D shape of the environment with a low com-
putational cost. However, it assumes that the roll angle
of the camera is 0°; this causes problems when the car is
tilted. Seki et al. proposed a method based on a projection
matrix [7]. However, this method assumed a single plane,
which caused problems when the slope changed. Other
studies [8—14] have used deep learning as a framework
for object detection. However, deep learning depends on
the environment at the time of training. As such, the accu-
racy is not guaranteed for environments differing from the
training data. Meanwhile, stereo cameras generally have
a narrow field of view.

In view of the above, in this study, a fisheye stereo
camera is used as a distance sensor with a wide viewing
angle [17]. Structure from motion (SfM) and epipolar-
plane image analyses using a fisheye camera along with
a monocular camera have been used as 3D measurement
methods [18, 19]. However, these methods face chal-
lenges, such as an insufficient distance measurement ac-
curacy. In addition, these analyses are performed with
a monocular camera. In contrast, a pseudo-bilateral fil-
ter is used in a 3D measurement method herein based
on a fisheye stereo camera [20]. The road surface plane
is estimated by considering the fact that the estimated
plane changes depending on the size of the segmentation
of the disparity image. Correspondingly, we propose a
method for understanding the environment without rely-
ing on deep learning. This method can be applied to a
wide range of environments with changes in slopes.
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Fig. 1. Flow of proposed method.

2. Outline of the Proposed Method

An overview of the proposed method is shown in Fig. 1.
The method consists of three main stages: 3D measure-
ment, road surface plane estimation, and object extrac-
tion. For the 3D measurement, we use a pseudo-bilateral
filter, and for the road surface plane estimation, we pro-
pose a method able to adapt to changes in slope by fit-
ting multiple planes. For object extraction, we perform
clustering based on frequency values in the distance after
morphological processing.

3. 3D Measurement Using Pseudo-Bilateral
Filter

In the 3D measurement stage, the 3D information ob-
tained by an area-based binocular stereo camera is fused
with the 3D information obtained by an SfM analysis to
obtain a dense and accurate distance image measurement.
The weighting is based on the distance between the pixel
of interest and its surrounding feature points and that be-
tween the disparity of the pixel of interest and that of its
surrounding feature points. As this weighting is similar to
that of a bilateral filter [21], it is called a pseudo-bilateral
filter. The pseudo-bilateral filter performs an SfM analy-
sis on three pairs of images from a total of four images ob-
tained before and after the motion from the left and right
cameras to obtain sparse but highly accurate 3D informa-
tion. The orientation of the baseline length differs for each
pair. As the distance accuracy varies greatly depending
on the orientation of the baseline length, we weight each
SfM pair while considering the orientation of the baseline
length in addition to the weights described above. In the
3D measurement method using the pseudo-bilateral filter,
the fisheye image is converted to an equirectangular im-
age with reduced distortion as shown in Fig. 2. This helps
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Fig. 2. Equirectangular image.
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Fig. 3. Disparity-elevation angle space.

avoid adverse effects on the 3D measurements from the
distortion inherent in the fisheye image. By processing in
the disparity space of the fisheye image, we can ignore the
error stretching that occurs when the image is converted
to a real space.

4. Estimation of Road Surface Plane

4.1. Preprocessing

In this study, outlier removal is performed as a prepro-
cessing step. The data obtained from the fisheye stereo
camera contains outliers which adversely affect the plane
estimation. As the difference between the outliers and sur-
rounding data is large, the outliers can be easily discrim-
inated based on the density of the point cloud. However,
the calculation of the density of a dense 3D point cloud
measured with a fisheye stereo camera is time-consuming.
Therefore, to reduce the computational cost, we reduce
the number of dimensions. A single azimuth angle is de-
fined and a two-dimensional space represented by the el-
evation angle ¢ and disparity AA is considered, as shown
in Fig. 3. The line indicated by the arrow in Fig. 3 repre-
sents the azimuth angle, the non-curvilinear dots represent
outliers, and the curved dots represent normal measure-
ment points. Fig. 3 shows that the outliers are mainly in
the region of a narrow elevation angle within the region
where the difference between the disparity and surround-
ing points is large. A threshold value A(A1),, is set for the
disparity in the space of the elevation angle and disparity
at the defined azimuth angle. We search for elevation an-
gles from —90° to 90°. When the disparity changes by
more than the threshold value, we examine the width in
the elevation direction of the region where the change oc-
curs. If it is less than the threshold Agy,, it is removed as
an outlier.
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4.2. Plane Estimation

When estimating the plane, the presence of objects or
changes in the slope of the road surface can cause the
plane to be incorrectly fitted to the point cloud. Therefore,
we consider dividing the region for the plane estimation.
If we divide the disparity image into smaller regions, the
possibility that both objects and the road surface exist in
the same area is reduced, and it becomes easier to approx-
imate the road surface shape as a plane. However, if the
region to be estimated is excessively small, it will be af-
fected by errors in the measurement of the point cloud.
Therefore, to estimate the plane with an appropriate di-
vision size, we change the size of the division in a step-
by-step manner and perform the plane estimation. We as-
sume that the plane matching the estimated plane param-
eters before and after the change is the plane that well-fits
the point cloud. In addition, there is no limitation on the
shape of an object to be detected. A model of the road sur-
face plane in the disparity space is computed to estimate
the road surface plane in the disparity space. The equation
for the road surface plane in the 3D information (X,Y,Z)
in the real space is as follows:

AX+PY+Z=1. . . . . . .. ...

This equation is converted to a model in the disparity
space as follows:

X cos@sini
Y| =D sin @ e )
Z COS Q Ccos @

_ Bxcos(A+AA)

~ sin(AA) xcos¢ )
Here, a’, b', and ¢’ are the road plane parameters in real
space, ¢ is the elevation angle, A is the azimuth angle,
D is the Euclidean distance from the camera, B is the
baseline length of the fisheye stereo camera, and A/ is the
disparity. D is obtained from triangulation in the equirect-
angular images [17]. After the transformation, AA is suf-
ficiently small to be estimated as follows:

cos(A+AA)~cosA. . . . . ... ... &

Therefore, the equation for the road surface plane is as
follows:

AL =acos@sinA +btan@cosA +ccos’A. . (5)

In addition, a, b, and c are the road plane parameters in
the disparity space, given as follows:

/

a 1 (@
b\ = B bl. .. ... ... ...
c c

This model of the road surface plane in the disparity space
is used to estimate the road surface plane. The procedure
is shown as follows:

i) Divide the disparity image into blocks of square re-

gions. The length of one side of each square is
2" pixels (n € N).
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Fig. 4. Split of a block in disparity image.
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Fig. 5. Road region extraction in disparity image.

ii) Apply a median filter of size 2"~! x 2"~! (shown
in the area centered on the upper left dot) to each
block in nine locations, resulting in sections based on
three horizontal lines and three vertical lines drawn
at equal intervals in the center, as shown in Fig. 4.

iii) Calculate the plane parameters a, b, and c¢ using the
least-squares method based on the values obtained in
step ii).

iv) Halve the length of each block and perform steps ii)—
iii), and then step v).

v) Calculate the similarity of the plane parameters be-
fore and after the division; perform step vi) if the
similarity is high, and step vii) if the similarity is low.

vi) Assume that the obtained plane parameters are esti-
mated in the appropriate segmentation and determine
the plane parameters.

vii) Repeat step iv). If the number of attempts exceeds a
certain number, the planar parameters cannot be es-
timated at that location (e.g., the boundary between
an object and road surface).

In step iii), Eq. (3) is used to calculate the plane parame-
ters. In this way, the obtained set of planes contains planes
fitted to objects. Therefore, the plane corresponding to an
object can be removed by focusing on the change in slope
in the obtained plane group. As shown in Fig. 5, we pre-
pare several seed points; then, we expand the domain to
the region where the change in slope is small at each seed
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point. The seed point with the largest region is selected
from the obtained regions; the region obtained by extend-
ing the seed point is defined as the road surface region.

5. Object Extraction and Height Estimation

5.1. Morphology Processing

The road surface plane obtained as described in Sec-
tion 4 is used to extract object candidates from the point
cloud. To define the road surface in the region where the
plane corresponding to the object is estimated, we take the
average of the plane parameters in the nearby road surface
region and interpolate the plane parameters in the object
region. A threshold is set for the absolute value of the dif-
ference in disparity with the obtained plane. The points
above this threshold are considered as objects. Next, a
binary image is generated, with 1 representing the loca-
tion where the object exists and O representing the loca-
tion where the object does not exist. The image is then
subjected to an opening and closing process to remove
small regions and holes. Then, clustering is performed
considering the connectivity.

5.2. Statistical Processing

As described in Section 5.1, clustering is performed
on the binary images. However, because the clustering
is performed in a compressed binary space, different ob-
jects may be recognized as the same class when occlu-
sion occurs. In addition, erroneous measurement points
between a plane and objects may be extracted as objects.
Therefore, a frequency distribution of distances is created
for each class. False measurement points between objects
and the road surface are removed by setting a threshold
value for the frequency (as they have lower frequencies).
In addition, the same object can be assumed to be continu-
ously distributed at similar distances; thus, if intermittent
regions exist, each continuous region can be reassigned to
a different class as a different object.

5.3. Estimation of Object Height

The height of each class as a single object is calculated
as follows:

|aX 4+ bZ +cY — B|

Height = @)
g va—+br+c?
The above is obtained from a calculation as follows:
'X4+bY+cZ—-1
Height = X+ BT +c | : 3)

Va?+b?+c?

The above calculations are combined with Eq. (6) based
on the relationship between the plane (aX + bY +cZ =0)
and distance of the point (X,Y,Z) in three dimensions.
For each class, the point farthest from the planar area is
selected and used in Egs. (3) and (8). In this way, the dis-
tance to the object and height of the object are calculated.
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Fig. 6. Experimental conditions.

Fig. 7. Fisheye stereo camera.

6. Experiments for Accuracy Evaluation

6.1. Experiments in Real Environment
6.1.1. Experiments with Objects

In this experiment, we first verified whether objects
were correctly extracted on a road surface with no
changes in slope. Moreover, the accuracy of the height
and distance to the objects were evaluated. The objects
were a 0.31-m-high piece of cardboard, a 1.76-m-high hu-
man, and a 0.21-m-high plastic bottle. A schematic dia-
gram of the environment is shown in Fig. 6. In Fig. 6, the
area on the left side represents the object, the line repre-
sents the plane, and the area on the right side represents
the camera. The camera was moved from back to front
by 0.15 m for the SfM analysis. Fig. 7 shows the fish-
eye stereo cameras used for our experiments. The cam-
eras were two FLIR Flea3 cameras, each equipped with
a SPACE TV1634M fisheye lens. The resolution of both
cameras was 1,328 x 1,048 pixels and the stereo baseline
was 52 mm. The angle of view was 165° in the horizontal
direction and 132° in the vertical direction. The objects
were measured at azimuth angles of —60°, 0°, and 60°,
and 10 shots were taken at distances of 1 m, 2 m, and 3 m
from the camera, respectively. The fisheye stereo cam-
era was set at a height of 1 m and tilted at a pitch angle
of 30°. The camera was set to move by 0.15 m. The
preprocessing threshold was set to 0.004 rad in the dis-
parity direction and 15 pixels in the elevation direction.
The similarity value used for the road plane was the inner
product of the normalized plane parameters with a thresh-
old of 0.98. For restricted expansion, the inner product
of the normalized planar parameters needed to be greater
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(a) Equirectangular image

(b) Disparity image
Fig. 8. Images with the cardboard at 1 m.

than or equal to the threshold of 0.95 and the average dis-
tance between adjacent lines in the image needed to be
less than 0.35 m. For clustering, the object region was de-
fined as the region with points with frequency values of 5
or more. The object region was divided into separate ob-
jects if the distance between them was greater than 0.3 m.
These thresholds were determined experimentally.

6.1.2. Results of Experiments with Objects

The experimental results are shown in Figs. 8-17.
Figs. 8-10 show the results for the cardboard, Figs. 11-13
for the human, and Figs. 14-17 for plastic bottles. Figs. 8,
11, 14, and 15 show the equirectangular and disparity im-
ages. Figs. 9, 12, and 16 show the colored points of the
clustered objects. Figs. 10, 13, and 17 show the mea-
surement errors of the object heights and distances to the
object. Figs. 9(a), 12(a), and 16(a) show that the target
object is extracted. However, objects are incorrectly ex-
tracted in other locations. On an actual road, the 3D point
cloud of the road surface should be a continuous plane.
However, Figs. 9(c), 12(c), and 16(c) show that the ex-
tracted point cloud of the road surface is not flat. It is
thought that the road surface plane could not be estimated
correctly owing to errors in the 3D measurements. This
is thought to be the reason for the incorrect extractions at
locations other than objects. Figs. 10, 13, and 17 show
that the absolute values of the measurement errors of the
distance and height at azimuth angles of —60° and 60°
are similar to those at the azimuth angle of 0° in many
situations. This indicates that the distance and height ac-
curacy does not deteriorate at the edge of the image. How-
ever, the maximum error in the distance is approximately
1.0 m and that in the height is approximately 0.7 m; these
are not small. This is thought to be owing to errors in
the 3D measurement as mentioned above. The error in
the height measurement at 1 m when a human is con-
sidered as an object is higher when the azimuth angle is
0° than when the azimuth angle is —60° or 60°. This is
thought to be owing to the inability to measure the human
head, as shown in Fig. 12(a). Furthermore, a plastic bottle
could not be detected at 3 m. The disparity image taken
as shown in Fig. 15 shows that the plastic bottle can be
measured. This is thought that the plastic bottle was re-
moved as noise by the statistical processing. A distance
accuracy of approximately 1.5 m at 50 m and processing
speed of approximately 30 fps are required for practical
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(a) Clustering image with the cardboard at 1 m

(c) Side view of point clouds with the cardboard at 1 m

Fig. 9. Clustering result with the cardboard.

use [22-25]. However, in certain situations, the measure-
ment error reaches up to 3 m and the processing speed is
only approximately 0.05 fps. Therefore, a faster process-
ing speed and improved distance measurement accuracy
are needed for practical use. This will be considered in
future work.

6.1.3. Experiments with Slope

In this experiment, we verified whether the system
could recognize a slope as road surface without mistak-
enly detecting it as an object in an environment where the
slope changes, as shown in Fig. 18. The position and ori-
entation of the fisheye stereo camera and threshold values
were the same as in Section 6.1.1.
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Fig. 10. Measurement error with the cardboard.

(a) Equirectangular image

(b) Disparity image
Fig. 11. Images with the human at 1 m.

6.1.4. Results of Experiments with Slope

The experimental results are shown in Figs. 19 and 20.
Fig. 19 shows the equirectangular and disparity images,
and Fig. 20 shows the clustered objects as colored points.
Fig. 20 shows that the road surface is not detected incor-
rectly as an object; moreover, the tree on the right side
of Fig. 19(a) and fence on the left side of the image are
correctly detected as objects. This demonstrated the use-
fulness of the system in managing an environment where
the slope changes.

6.2. Simulation Experiments

In this section, simulation experiments were conducted
for various environments that were difficult to prepare in
a real environment. As shown in Fig. 21, the experimen-
tal environments included an environment with a variable
slope, one with a hole, one with occlusion, and one with
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(a) Clustering image with the human at 1 m

(b) Front view of point clouds with the human at 1 m

(c) Side view of point clouds with the human at 1 m

Fig. 12. Clustering result with the human.

an assumed parking space. The parking space was 3 m
wide and 6 m deep and was surrounded by a 1 m wall. In
this simulation experiment, we used the 3DCG software
Blender [a]. In Blender, the render engine was Cycles,
and the lens was a panoramic equirectangular cylindrical
view. The horizontal and vertical resolution were set to
1,328 and 1,048 pixels, respectively. The horizontal and
vertical angles of view were set to 180° and 142°, respec-
tively. The size of the image sensor in the horizontal di-
rection was set to 36 mm and that in the vertical direc-
tion was set automatically. The camera movement was
set to 0.15 m as in the experiment described in the pre-
vious section, and the object was set at 0.5 m in height.
The simulation results are shown in Figs. 22-25 and Ta-
ble 1. Figs. 22-25 show an equirectangular image, the
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Fig. 13. Measurement error with the human.

(a) Equirectangular image (b) Disparity image

Fig. 14. Images with the plastic bottle at 1 m.

(a) Equirectangular image

(b) Disparity image
Fig. 15. Images with the plastic bottle at 3 m.

disparity images, and the 3D point clouds colored with
the clustered objects in each environment, respectively.
The objects are correctly extracted in each environment.
Moreover, the objects are not incorrectly extracted when
the angle changes. It is thought that the road surface plane
estimation described in Section 4 did not extract the loca-

1360

(a) Clustering image with the plastic bottle at 1 m

(c) Side view of point clouds with the plastic bottle at 1 m

Fig. 16. Clustering result with the plastic bottle.

tions with changes in inclination (as shown in Figs. 22
and 25) as objects. It is also thought that the statistical
process described in Section 5.2 can extract the objects
as separate objects even in an environment with occlu-
sions. Figs. 22(d), 23(d), 24(d), and 25(d) show that the
extracted road surface points are planar, unlike those in
the experimental results in Section 6.1. It is considered
that the reason why the point cloud of the road surface
extracted as described in Section 6.1 was not planar was
owing to the 3D measurement error. Table 1 shows the er-
ror in the distance between the object and camera and that
for height of the object. These results are more accurate
than those from the experiment described in Section 6.1.
The 3D point clouds shown in Figs. 22-25 are correctly
extracted. It is thought that the accuracy of the previous
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Fig. 17. Measurement error with the plastic bottle.
(a) Clustering image with the slope

(c) Side view of point clouds with the slope

Fig. 20. Clustering result with the slope.

(b) View from afar

Fig. 18. Environment for an experiment with slope.
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Fig. 21. Simulation conditions.

(d) Point cloud from side view

Fig. 22. Results of inclined environment.
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(c) Point cloud from front view

(d) Point cloud from side view

Fig. 23. Results for environment with a hole.
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(a) Equirectangular image

(b) Disparity image

(d) Point cloud from side view

Fig. 24. Results for environment with occlusion.

distances and heights was reduced by errors in the esti-
mation of the planar parameters owing to errors in the 3D
measurements.

7. Conclusion

In this paper, we proposed a method for road surface
plane estimation and object extraction using a hierarchi-
cal structure based on 3D information obtained from a
fisheye stereo camera. Experimental results show that ob-
jects can be extracted in a flat environment. In addition,
experiments with changes in road slope show that the sys-
tem can estimate the road surface without mistaking the
change of slope as an object. Simulation results show that
the method is also applicable to environments with holes
and changes in slopes. However, the system is currently
limited in its ability to recognize the environment because
it only processes a disparity image. Including color im-
ages can provide vital cues to cover for situations where
the disparity is inaccurate. Future works will aim at in-
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(d) Point cloud from side view

Fig. 25. Results for environment with parking lot.

Table 1. Errors of distance and height.

Distance [m] | Height [m]
Inclined plane 0.19 0.01
Occlusion (front) 0.19 0.09
Occlusion (back) 0.04 —-0.04
Parking lot 0.02 0.01

creasing the accuracy and speed by considering the con-
sistency of the time series. In addition, it is important to
improve the accuracy of 3D measurement using the fish-
eye stereo camera, to verify images that include motion
blur, and to verify whether the occlusion can be identified
as another obstacle in an actual environment.
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