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Abstract.  In this paper, we propose a novel iterative closest point (ICP)-based 
simultaneous localization and mapping (SLAM) approach that can build robust 
map information even in indoor environments where humans coexist. Several 
SLAM methods that have been studied so far assume a stationary environment. 
But there are challenges in operating in a dynamic environment with moving ob-
jects such as humans.  Specifically, when a mobile robot constructs a map in an 
environment where humans coexist nearby, humans cause false matching in 
alignment sensor data. Furthermore, human occlusion also makes it difficult to 
construct a map with high accuracy. Therefore, we propose a human removal 
process that utilizes You Look Only Once (YOLO) to detect humans in image 
data. In this paper, by using this process with ICP-SLAM, we aim to improve the 
accuracy of map construction in an environment where humans coexist nearby. 
In our experiments, we verified the accuracy of map construction in comparison 
with conventional methods. This experiment is conducted in an indoor corridor 
where humans coexist nearby. Although we used ICP-SLAM for verification this 
time, the human removal process can be adapted to other SLAMS. 
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1 Introduction 

The use of autonomous mobile robots to replace human workers is currently attracting 
attention. Specifically, these robots are being introduced into indoor environments 
where humans coexist nearby. This purpose is for transportation and guidance in fac-
tories and airports. In recent years, a remarkable shortage of manpower has been caused 
by the decrease in the working population. Therefore, the importance of these robots is 
expected to continue to increase and the automation by robots is remarkable. However, 
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autonomous movement with high efficiency is essential because these robots are re-
quired to work at the same level or higher than humans in the real environment. For 
this reason, it is necessary to construct a map in advance and operate using it. Specifi-
cally, maps are used as advanced information for navigation and to improve the accu-
racy of map construction by autonomous robots [1,2]. Therefore, prior map building by 
SLAM is an essential process for the operation of these robots. 

A lot of studies for SLAM. Among them, ICP-based SLAM is often used. ICP is one 
of the methods for aligning two different 3D measurement data and calculates rigid 
body transformation parameters for aligning them. ICP-based SLAM approach uses 
only environmental shape information obtained from sensors [3,4,5,6]. In addition, 
many visual SLAM approaches that extract and utilize features from images acquired 
by cameras also have been proposed [7][8][9]. 

However, all of these methods assume a stationary environment and have limitations 
in applying to real environments. Therefore, in dynamic environments in which humans 
exist, false alignment and matching can occur in sensor data. In addition, since sensor 
data is defective due to human occlusion, the removal of human sensor data is necessary 
for highly accurate map construction. In conclusion, robust pre-mapping in response to 
human occlusion is an important issue for the introduction of autonomous mobile ro-
bots in real environments.  

Therefore, to deal with humans, dynamic features are detected by using difference 
processing between adjacent frames, and dynamic objects including humans are dealt 
with by not using these features for matching.[10,11,12,13] Another method uses 
RGBD images to discriminate static and dynamic regions in the image between adja-
cent frames, and addresses dynamic objects by leaving only static regions.[14,15] How-
ever, these methods cannot detect humans when they are temporarily stationary. In that 
case, all the point clouds of the humans remain and are recognized as static features, 
resulting in false matching. 

Yu et al. use semantic segmentation [16] for multiple object detection and dense map 
construction with human removal [17]. However, semantic segmentation for multiple 
object detection requires a large amount of training data and time.  

Joan et al. and Berta et al. used YOLO[18] and Mask R-CNN[19] to extract dynamic 
features of detected regions and remove humans from images[20,21]. However, these 
methods require multiple frames to remove a human for a narrow processing area. Here, 
a narrow processing area refers to the size of the area where sensor data can be obtained 
per frame. In addition, the narrow search range of a single frame results in a large pro-
portion of occlusions in the image when removing human occlusions. On the other 
hand, a preliminary map for an autonomous mobile robot requires a rough map of the 
entire environment rather than a detailed map, so a method to search a wide area with 
fewer frames is suitable. Where rough and detailed refer to the density of the point 
cloud. 

In this paper, we propose a robust map construction system that can search a wide area 
with fewer frames in an indoor environment where humans coexist, by applying the 
human removal process based on object detection using YOLO to SLAM. The novelty 
of our method is that the results of object detection by YOLO are reflected in the point 
cloud acquired by LiDAR using point cloud correspondence, which enables human 
identification. We explain the method of reflecting the detection results in Chapter 3.  
In addition, by using an RGBD camera in this method, the results of object detection in 
the image can be easily reflected and handled with high accuracy. This allows only the 
portion of the point cloud acquired by LiDAR that requires human exclusion in the 
vicinity of the robot to be handled with the minimum amount of point cloud removal 
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processing required. If we use only LiDAR, a sensor data is only a point cloud, making 
human detection difficult. The measurement range of RGB-D camera is shorter than 
LiDAR. So the distance at which a human can be detected is limited. But this is not a 
problem when the human is located far from the robot, because the effect on map con-
struction is little. 

Furthermore, several studies of dynamic SLAM cannot detect humans when they are 
temporarily stationary. In that case, all the point clouds of the humans remain and are 
recognized as static features, resulting in false matching. 

On the other hand, our method is robust because it can detect humans regardless of 
their movement status.  

The rest of this paper is structured as follows: Section 2 discusses the outline of ICP-
SLAM by human removal process by using YOLO, Section 3 gives the details of the 
proposed human removal process proposal. Section 4 details the ICP algorithm as a 
method to align two different 3D point clouds, Section 5 details the true map, the eval-
uation method, and the experimental results. Section 6 presents the conclusions and 
lines for future work. 

2 Outline of the method 

An overview of the proposed method is shown in Fig. 1. In this method, RGB-D images 
and 3D point cloud information acquired by the range image sensor and LiDAR on the 
robot are used for map construction. The RGB-D camera can acquire images and point 
clouds in close areas from the robot, while LiDAR can acquire point clouds in a wide 
area around the robot. In this paper, point clouds acquired by the RGB-D camera are 
denoted as point cloud 𝑷𝑷𝒓𝒓, and point clouds acquired by LiDAR are denoted as point 
cloud 𝑷𝑷𝒍𝒍. First, the position of the robot is updated by odometry.  

Odometry is calculated by the angle of rotation of the wheels obtained from the robot's 
internal sensors. Next, the human removal process is performed on the point cloud 𝑷𝑷𝒍𝒍. 
The process identifies the human by using images and removing the human point cloud. 
For human identification, we use YOLO, a fast object detection algorithm based on 
deep learning, to detect humans in images. Then, by mapping the image to the point 
cloud 𝑷𝑷𝒓𝒓, the results of the human detection are also reflected in the point cloud 𝑷𝑷𝒍𝒍, 
furthermore, the point cloud of the human is detected and removed. After that, we use 
the ICP (iterative closest point) algorithm to align the points and construct a map of the 
environment without point cloud data of humans.  

In this method, the point cloud is downsampled using a voxel grid, which reduces the 
density of the point cloud and speeds up the point cloud processing. 
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Fig. 1 Outline of the proposed method.  

3 Human removal process 

In this section, we discuss how to deal with human occlusion, which is essential for 
robust map construction in environments with humans. First, we perform human detec-
tion using YOLO to find the human area in the image, as shown in Fig. 2. The human 
region is a rectangular bounding box including the background. Next, from the range 
image acquired by the range image sensor, we extract only the point cloud 𝑷𝑷𝒓𝒓 that be-
longs to the human area detected by YOLO. (Fig.3. (a)) Here, this human area includes 
the background. Thus, we use clustering and identify the background by the number of 
point clouds. Then the background is removed from the original human area as shown 
in Fig. 3. The point cloud data of the human is extracted. After that, this point cloud 𝑷𝑷𝒍𝒍 
of the human area obtained and the point cloud 𝑷𝑷𝒍𝒍 obtained by LiDAR are matched for 
correspondence using the nearest neighbor search [22]. This correspondence allows the 
results of human identification in the image to be reflected in the point cloud obtained 
𝑷𝑷𝒍𝒍, enabling the detection of humans in the point cloud 𝑷𝑷𝒍𝒍 [23].  

Then, as shown in Fig. 4, the point cloud 𝑷𝑷𝒍𝒍 of the surrounding environment without 
humans is obtained by removing the corresponding point cloud of humans from the 
point cloud 𝑷𝑷𝒍𝒍.  

In this method, the downsampling process is used as a preprocessing step for the point 
cloud. To map the point cloud 𝑷𝑷𝒍𝒍 to the point cloud of a person, the threshold of the 
downsampling process is set individually in order to map more point clouds. Specifi-
cally, the density of the point cloud 𝑷𝑷𝒓𝒓 camera, which is the search source, is increased 
and the density of the point cloud 𝑷𝑷𝒍𝒍 is decreased. This allows for downsampling while 
allowing for many correspondences. 
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Fig.2 The result of human detection by YOLO. 

  
(a) before clustering                       (b) after clustering 

Fig.3 The result of background removal. 

  
(a) before removal                            (b) after removal 

Fig.4 Human removal process. 

4 Alignment by ICP 

In this paper, we use the ICP algorithm as a method to align two different 3D point 
clouds. In general, in SLAM for autonomous mobile robots, the robot position obtained 
by odometry is used as the initial position. However, errors accumulate in odometry, 
and as the distance traveled increases, the map becomes distorted. In this paper, we 
propose a method to reduce the error by using ICP. 

The alignment of the point cloud is evaluated by the average of the distances between 
the points of each point and is attributed to the minimization problem. In this case, the 
point cloud measured in the current frame after human removal (source point cloud) is 
aligned with the point cloud measured in the previous frame (target point cloud). the 
evaluation formula of ICP algorithm is as follows.  
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𝐸𝐸 = 𝑚𝑚𝑚𝑚𝑚𝑚��𝒑𝒑𝑘𝑘𝑖𝑖 − (𝒒𝒒𝒊𝒊𝑹𝑹 + 𝑻𝑻)�2
𝑁𝑁

𝑖𝑖=1

(1) 

• E: sum of the squared distance (i.e., evaluation value) 

• p: a point in the source point cloud 

• q: a point in the target point cloud 

• N: the number of points in the source point cloud (i.e., number of iterations)  

• 𝑘𝑘𝑖𝑖: the reference scan data point corresponding to the point i in the source point 

cloud 

• R: the rotation matrix  

• T: the translation vector 

Using the evaluation formula shown in Equation (1), the positioning accuracy is eval-
uated by the sum of squares E of the distance between points, moreover, the rigid body 
transformation parameter when e is minimum is obtained [3]. In this paper, the point 
cloud of the frame after human removal (source point cloud) and the point cloud of one 
frame before (target point cloud) are aligned by ICP. Then, the rotation matrix R and 
the translation vector T calculated from the ICP results are used to estimate the robot's 
self-position and construct a map at the same time. 

5 Experiments 

To validate the proposed method, we compared and evaluated the accuracy results of 
maps by odometry and ICP-SLAM without human removal, and ICP-SLAM with hu-
man removal. The accuracy of the map was evaluated by calculating the distance be-
tween each point on the map by each method from each point on the true map and 
taking the average of the sum of the distances as the error. In this experiment, as shown 
in Fig. 5 (a), we used a mobile robot (Adept Mobile Robots Pioneer-3DX), a range 
image sensor (Intel RealSense LiDAR Camera L515), and a LiDAR (Velodyne Li-
DAR's VLP-16). We fixed the range image sensor and LiDAR on the mobile robot. The 
range image sensor and LiDAR were fixed on the mobile robot for the measurement. 
The overhead view of the environment is shown in Fig. 5 (b) and the detail of the ex-
perimental environments are shown in Fig. 6 and Fig. 7 for experiment I and II respec-
tively. The human movement paths for each experiment are shown in Fig. 8. The tra-
jectory of the mobile robot in this experiment is shown by the yellow line in Fig. 9, Fig. 
10, Fig. 11, and Fig. 12.  
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(a) State of experiment                   (b) Overhead view of the environment 

Fig.5 The experimental environment. 

  
(a) 1frame                                                            (b) 2frame 

  
(c) 3frame                                                            (d) 4frame 

  
(e) 5frame                                                            (f) 6frame 

 
(g) 7frame   

Fig.6 The experimental I environment 
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(a) 1frame                                                            (b) 2frame 

 
(c) 3frame                                                            (d) 4frame 

 
(e) 5frame                                                            (f) 6frame 

 
(g) 7frame   

Fig.7 The experimental II environment. 

 
(a) Experimental I 

 
(b) Experimental II 

Fig.8 Human movement paths. 
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5.1 Situation 

As shown in Fig. 6 and Fig. 7, this experiment was conducted in the hallway on the 
seventh floor of Building No. 2 at Chuo University's Korakuen Campus for a total of 
seven frames in two ways. In the experiments, humans are always in the camera's field 
of view. In experiment Ⅰ, as shown in Fig. 6, four humans were stationary in all frames. 
In Experiment  II, as shown in Fig. 7, one of the four humans walked and the other three 
remained stationary in all frames. In both cases, the positions of the humans were 
changed in each frame to reproduce a dynamic environment that is closer to the real 
environment. In the experiments, the humans are always in the field of view of the 
RGB-D sensor. However, in a real situation, they may move in and out. To counter this, 
the use of multiple RGB-D sensors can help. This will be considered future work. Hu-
man movement paths are shown in Fig. 8. In the measurement experiment, the robot 
moves for approximately 10 seconds between each frame, and after moving, it stands 
still for approximately 5 seconds to take pictures. In this experiment, this action was 
repeated for a total of seven frames. 

5.2 True map 

The true maps used in the evaluation were created by manual positioning of the sensor 
data acquired in this experiment. Since there are two types of maps for each method, 
one with humans removed and one without, two types of true maps were prepared.  So, 
error calculations were performed between the same types. Therefore, the accuracy of 
the environmental maps can be evaluated without the influence of human point clouds. 
Since both true maps are aligned only on the non-human environmental map portion, 
there is no human influence on creating the true map. 

5.3 Evaluation method 

 Each point in the point cloud has 3D coordinates and indexes as information and is 
stored as sensor data. Therefore, the error of the map for each method is calculated by 
the distance between points with the same index in the true map.  

The average of the sum of the distances between the points is calculated as the average 
of the errors, furthermore, the accuracy of the map construction is evaluated according 
to the errors.  

In addition, there is a difference in the number of points due to the presence or absence 
of humans in each method. However, since two types of true maps are used, there is no 
effect of the difference in point cloud size during the evaluation. 

5.4 Results 

From the results shown in Tables 1 and 2, the proposed method with the human re-
moval process has the smallest error and enables robust map construction. Map con-
struction is performed separately based on this measurement data. The processing time 
for this process is approximately 10 to 20 seconds per frame. However, the processing 
time may vary slightly depending on the measurement data. 

 In Experiment Ⅱ, the proposed method is highly robust to humans because not only 
stationary humans but also walking humans are present. Furthermore, Fig. 11 (a) and 
Fig. 12 (a) show that although many human point clouds are accumulated in the sensor 
data, the proposed method has considerably fewer human point clouds than the con-
ventional method (Fig. 11(b) and Fig. 12 (b)). In other words, the proposed method is 



K. Akiba, R. Suzuki, Y. Ji,  S. Pathak, K. Umeda (2023). Performance Improve-
ment of ICP-SLAM by Human Removal Process Using YOLO 
 

 
 10 

suitable for operation in real environments where humans move frequently. The pro-
posed method can be easily used as a preliminary information map by the human re-
moval process. 

On the other hand, in Fig. 9, the map by odometry appears to have the largest error. 
But as shown in Table 1, the error of odometry is smaller than that of the conventional 
ICP-SLAM. Because the robot's rotational movements are small and the percentage of 
points with large errors is quite small in Experiment Ⅰ, this is probably the result of the 
overall smaller error.  

In the enlarged image of the proposed method shown in Fig. 11 and Fig. 12, a part of 
the human point clouds in the back of the image remains. Because a part of the human 
point clouds could not be removed due to the measurement range of the range image 
sensor. Concerning a walking human, there may be some misalignment between the 
point cloud 𝑷𝑷𝒓𝒓 and point cloud 𝑷𝑷𝒍𝒍. In such cases, some of the point clouds of humans 
may not be able to be matched and removed. 

  
(a) True map                             (b) Odometry 

  
(c) ICP-SLAM w/o human removal  (d) ICP-SLAM w/ human removal 

Fig.9 Map construction results by each method in Experiment I. 
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(a) True map                            (b) Odometry 

  
(c) ICP-SLAM w/o human removal  (d) ICP-SLAM w/ human removal 

Fig.10 Map construction results by each method in Experiment II. 

  
(a) ICP-SLAM w/o human removal            (b) ICP-SLAM w/ human removal 

Fig.11 Enlarged map construction results in Experiment I.  

  
(a) ICP-SLAM w/o human removal             (b) ICP-SLAM w/ human removal 

Fig.12 Enlarged map construction results in Experiment II.  
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Table. 1 Error of map information in Experiment Ⅰ [m]. 

Odometry 0.462 

ICP-SLAM w/o human removal 0.491 

ICP-SLAM w/ human removal 0.269 

Table. 2 Error of map information in Experiment Ⅱ [m]. 

Odometry 0.478 

ICP-SLAM w/o human removal 0.131 

ICP-SLAM w/ human removal 0.097 

 

6 Conclusions 

In this paper, we proposed a method of applying the human removal process using 
object detection by YOLO to ICP-SLAM. By using this method to remove human data 
in indoor environments where humans are present, a highly accurate map construction 
was achieved.  

For the verification of this method, a single RGB-D camera is used in this paper. But 
if we use four cameras, human detection can be performed in 360°.  

In experiments, we verified the effectiveness of the proposed method for map con-
struction and as preliminary information in a dynamic environment with many humans, 
which is quite close to the real environment. The results showed that the proposed 
method significantly outperforms conventional methods in terms of accuracy and ro-
bustness to humans in dynamic environments. 
In addition, the effectiveness of the human removal process was verified using ICP-
SLAM, but the proposed method can be used with other point cloud-based SLAMs as 
well. 

On the other hand, the currently proposed method can only be used to identify humans 
among the YOLO identification objects. Therefore, in the future, we would like to ex-
pand the YOLO identification objects that can be used with this method to identify 
obstacles and stationary objects other than humans. This will enable the use of YOLO 
object detections as landmarks and the removal of obstacles to further improve the ac-
curacy of map construction.  

In addition, this method does not fully deal with the loss of sensor data caused by 
human occlusion. Therefore, we are currently working to extend this method to an ac-
tive map construction system by path planning that interpolates missing areas. 

References 

1. M. Kimba, N. Machinaka, and Y. Kuroda, “Edge-Node Map-Based Localization without 
External Sensor Data,” In Proc. of the 1999 IEEE International Conference on Robotics and 
Automation (ICRA1999), pp. 1322-1328,1999. 

2. R. Suzuki, Y. Ji, and K. Umeda, “Indoor SLAM based online observation probability using 
a hand-drawn map,” In Proc. of the 2022 IEEE/SICE International Symposium on System 
Integration (SII2022), pp. 695-698,2022. 



Applied human informatics, vol.5 No.1 
 

 
  13 

3. P. J. Besl and N. D. McKay, “A Method for registration of 3-D shapes.” In IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, pp. 239–256, 1992. 

4. D. Chetverikov, D. Svirko, D. Stepanov, and P. Krsek, “The Trimmed Iterative Closest Point 
algorithm,” In Proc. of  IEEE International Conference on Pattern Recognition, pp.545–548, 
2002.  

5. G. Sébastien, and P. Xavier, “Multi-scale EM-ICP: A Fast and Robust Approach for Surface 
Registration,” In Proc. Of the European Conference on Computer Vision, pp.418–432, 2002.  

6. S. Kaneko, T. Kondo, and A. Miyamoto, “Robust matching of 3D contours using iterative 
closest point algorithm improved by M-estimation,” Pattern Recognition, Vol.36, No.9, 
pp.2041–2047, 2003.  

7. J. Engel, T. Schöps, and D. Cremers, “LSD-SLAM: Large-Scale Direct Monocular SLAM,” 
In Proc. of European Conference on Computer Vision, pp.834– 849, 2014.  

8. J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, vol. 40, no. 3, pp. 611–625, 2017.  

9. R. Mur-Artal, J. M. M. Montiel, and J. D. Tards, “ORB-SLAM: A Versatile and Accurate 
Monocular SLAM System,” IEEE Transactions on Robotics, Vol.31, No.5, pp.1147–1163,  
2015. 

10. X. Chen et al., “SuMa++: Efficient LiDAR-based Semantic SLAM, ” In IROS, 2019. 
11. W. Liu et al., “DLOAM: Real-time and Robust LiDAR SLAM System Based on CNN in 

Dynamic Urban Environments, ” IEEE Open Journal of Intelligent Transportation Systems, 
2021. 

12. Q. Lie et al., “LO-Net: Deep Real-time Lidar Odometry, ” In CVPR, 2019. 
13. P. Pfreundschuh et al., “Dynamic Object Aware LiDAR SLAM based on Automatic Gener-

ation of Training Data, ” In ICRA, 2021. 
14. E. Palazzolo et al., “ReFusion: 3D Reconstruction in Dynamic Environments for RGB-D 

Cameras Exploiting Residuals, ” In IROS, 2019. 
15. R. Scona et al., “StaticFusion: Background Reconstruction for Dense RGB-D SLAM in 

Dynamic Environments, ” In ICRA, 2018. 
16. V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-

decoder architecture for image segmentation,”  In Proc. of IEEE Transactions on Pattern 
Analysis and Machine Intelligence, Vol. 39, No.12, pp. 2481-2495, 2017. 

17. C. Yu, et al., “DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments,” In 
Proc. of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 
1168-1174, 2018. 

18. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified, Real-
Time Object Detection,” In Proc. of the IEEE Conference on Computer Vision and Pattern 
Recognition , pp. 779-788, 2016. 

19. K. He, G. Gkioxari, P. Doll, and R. Girshick, “Mask R-CNN,” in Proc. of the IEEE Conf. 
International Conference on Computer Vision (ICCV), pp. 2980-2988, 2017. 

20. J. C. V. Soares, M. Gattass, and M. A. Meggiolaro, “Visual SLAM in Human Populated 
Environments: Exploring the Trade-off between Accuracy and Speed of YOLO and Mask 
R-CNN,” International Conference on Advanced Robotics (ICAR), pp. 135-140, 2019. 

21. B. Bescos, J. M. Fácil, J. Civera, and J. Neira, “DynaSLAM: Tracking, Mapping, and 
Inpainting in Dynamic Scenes, ” In Proc. of IEEE Robotics and Automation Letters, Vol. 3, 
No. 4, pp. 4076-4083, 2018. 

22. J. L. Bentley, “K-d Trees for Semidynamic Point Sets,” In Proc. of the 6th annual Sympo-
sium on Computational Geometry (SCG), pp. 187-197, 1990. 

23. A. Dhall, K. Chelani, V. Radhakrishnan and K. M. Krishna, “LiDAR-camera calibration 
using 3D-3D point correspondences,” In arXiv preprint arXiv:1705.09785, 2017. 

 


	Received: Jul. 20 2022; Revised:  Dec 11 2022; Accepted: Feb. 8 2023
	1 Introduction
	2 Outline of the method
	3 Human removal process
	4 Alignment by ICP
	5 Experiments
	5.1 Situation
	5.2 True map
	5.3 Evaluation method
	5.4 Results
	6 Conclusions
	References

