
  

  

Abstract— In this paper, we propose a method to estimate 

robot pose accurately by considering environmental features 

for the particle filter. Particle filters have been widely used for 

pose estimation of mobile robots. However, the accuracy of the 

self-positioning estimation is degraded in environments where 

the shape features are scarce. Therefore, a novel likelihood 

function is designed by taking into account the environmental 

features for the particle filter. We improve the accuracy of the 

pose estimation by fusing the likelihood of the shape 

information and the likelihood of the binary attribute 

information in the water puddle for the particle filter. 

I. INTRODUCTION 

After the Great East Japan Earthquake on March 11, 
2011, the Fukushima Daiichi Nuclear Power Station leaked 
radioactive materials, making it difficult for humans to enter 
the plant. Therefore, robots have been attracting attention for 
exploration and decommissioning activities in place of 
humans. In the operation of mobile robots, it is necessary to 
always know the robot pose and particle filters reflecting 
information from range sensor are commonly used [1-4]. 
However, these studies consider only the shape features of 
the environment, and pose estimation is difficult in 
environments with poor shape features. For example, long 
corridors. Ohno et al. proposed a method to identify valid 
GPS observations using odometry and to reflect the GPS 
information in a particle filter [5]. Nishimura et al. proposed 
a method to discriminate valid observations by recognizing 
obstacle areas and sky areas using an infrared camera to 
capture the sky above [6]. However, these studies cannot 
provide accurate pose estimation inside a nuclear reactor 
building because it is difficult to continuously input valid 
GPS observations indoors. Yamaguchi et al. proposed a 
method to improve the accuracy of pose estimation by 
recognizing white lines and road signs as landmarks by 
extracting edges from images captured with a fisheye camera 
and reflecting them in a particle filter [7]. However, it is 
difficult to improve pose estimation because white lines and 
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road signs that serve as landmarks cannot be observed in the 
nuclear power plant. Hatakeyama et al. proposed a pose 
estimation method using range images obtained from a depth 
camera  [8]. However, light in the reactor building after a 
disaster is insufficient for observation with a camera. 
Therefore, effective information cannot be obtained, making 
pose estimation difficult. 

In this study, we use light detection and ranging 

(LiDAR), which is effective even in dark places, to observe 
the shape information of the environment. And, it is 
expected that a large number of water puddles exist in the 
damaged nuclear power plant. Then, we propose a method to 
improve the accuracy of pose estimation in a nuclear reactor 
building after a disaster by using a near-infrared sensor to 
observe the feature quantities of water puddle in the 
damaged nuclear power plant and reflecting them in a 
particle filter.  

The remainder of this paper is as follows. Section II 
provides an overview of the proposed method. Simulation 
results are detailed in Section III. Finally, Section IV 
provides conclusions and insights on future work. 

II. PROPOSED METHOD 

A. Overview of the Proposed Method 

Figure 1 shows a flowchart of the proposed method. In 
this study, the method proposed by Dellaert et al. is adopted 
as a reference method [1]. Particle Filter is a type of time 
series filtering, a method that can sequentially estimate 
future states from past states. The algorithm is roughly 
divided into four processes: "Prediction", "Update", 
"Resampling" and "Localization", which are repeated to 
estimate robot pose. In the proposed method, in addition to 

 

Figure 1.  Flowchart of proposed framework. 
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Figure 2.  Sensor system. 

 

Figure 3.  Point cloud of water puddle. 

the distance value obtained from LiDAR, the "attribute" of 
water puddle obtained from a near-infrared sensor is added 
to the "Update" part. As shown in Figures 2 and 3, Kataoka 
et al. combined LiDAR with the sensor system in [9], and 
succeeded in obtaining point clouds of the intensity of 
LiDAR and the intensity of a near-infrared sensors [10]. In 
this research, we define "attribute value" as the presence or 
absence of environmental properties or features, specifically 
water puddles. The robot considered in this research is 
equipped with a LiDAR sensor and a near-infrared sensor, 
and that it is capable of obtaining distance values and 
attribute values for its surroundings. The attribute values are 
assumed to be obtained by observing water puddles. 

B. Observation Method 

To observe water puddles, we refer to Sugawara et al. 
[11]. They constructed a sensing system for three-
dimensional (3D) visualization of the presence of water 
puddles, such as contaminated water leaks and water puddles 
in a nuclear power plant, and enables the measurement of the 
distance to the water puddles. 

C. Likelihood Calculation 

In this study, we assume that the measurements are made 
by the sensor system described in section II-A, and that the 
measured values for each laser of LiDAR include distance 
value and binary attribute value. In the weighting of each 

particle in the particle filter, the likelihood function g(p, ) 
for the distance value of one laser of LiDAR is shown in the 
following equation: 

 

(1) 

where µ and p are the distance value actually measured and 
the distance value obtained by ray tracing from each 

particle’s posture using map information, respectively. g2 

is the variance of the error of the distance value. 

The likelihood function h(q, λ) for the binary attribute 
value of one laser of LiDAR is shown in the following 
equation: 

 

(2) 

where  and q are the measured attribute value and the 
attribute value obtained from each particle’s posture using 

map information, respectively. h2 is the variance of the 
error of the distance value. 

Finally, we calculate the weight (i.e., likelihood) ω of 
each particle by calculating and multiplying the likelihood 
functions of (1) and (2) for each laser, as shown in the 
following equation: 

 

(3) 

where n means the number of lasers. The weights obtained 
by the likelihood function in (3) is higher if the distance 
value and the attribute value matched. 

III. SIMULATION EXPERIMENT  

Simulation experiments were conducted to verify that the 
proposed method can be used to accurately estimate the pose 
of a mobile robot in environments with few geometrical 
features. Using simulated measurement data, pose estimation 
was performed for both the proposed and reference methods 
[1], and evaluated by calculating the Euclidean distance from 
the robot position to the predicted robot position. 

A. Simulation Environments  

In this paper, to verify that the proposed method is 
effective regardless of the placement of water puddles, 
simulations were conducted under two different conditions: 
Simulation A, in which water puddles are placed densely in a 
long corridor, and Simulation B, in which water puddles are 
placed over the entire map. Figures 4 and 5 show the 
conditions of Simulation A and B. 

 

Figure 4.  Simulation A. 
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Figure 5.  Simulation B. 

 In this simulation, a two-dimensional grid map 
generated from the shape information of the corridor on the 
7th floor of Building No. 2 at the Korakuen Campus of Chuo 
University was used. The light gray area is a flat floor with a 
height of 0. Darker gray areas represent walls. Other black 
areas are assumed to be empty. The size of the entire map is 
roughly 20 m long and 70 m wide, with one cell of the grid 
being a square 1 m long and 1 m wide. The coordinate 
system in the lower left shows the origin. The initial position 
of the robot was (68 m, 9.5 m) and the goal position was (2 
m, 8 m). Ten water puddles were virtually placed in the light 
blue areas of Figures 4 and 5 in the simulation environment. 
The attribute values of the water puddle were set to 0 and 1, 
which are binary values. Here, 0 means a general wall and 1 
means a water puddle. The displacement of the odometry 
was calculated from the simulation results of the robot’s 
autonomous navigation, and a random noise was added to 
the displacements in the range of -15%-15% to the 
displacement. 

B. Simulation Results 

The results of simulation A calculated by the proposed 
and reference methods are shown in Figure 6 and Table 1. 
The results of simulation B in Figure 7 and Table 2. The 
vertical axis represents the error in Euclidean distance, 
expressed in meters. The horizontal axis represents frames, 
and in this simulation, the mobile robot reached the goal in 
928 frames. The black line shows the error of the position 
estimated by the reference method, and the red line shows 
the error of the position estimated by the proposed method. 

The average and maximum values of the position error 
for all frames for each of the reference and proposed 
methods are shown in Table 1 for Simulation A and Table 2 
for Simulation B. 

 

Figure 6.  Results for simulation A. 

 

Figure 7.  Result of simulation B. 

TABLE I.  ERROR OF SIMULATION A  

 
Simulation A 

Reference method Proposed method 

Average [m] 1.69 0.31 

Max [m] 4.93 0.85 

TABLE II.  ERROR OF SIMULATION B  

 
Simulation B 

Reference method Proposed method 

Average [m] 2.37 0.31 

Max [m] 5.36 0.79 

C. Discussion 

Figures 6 and 7 and Tables 1 and 2 show that, overall, 
the errors of the proposed method are smaller than those of 
the reference method. In both simulations A and B, 0th-300th 
frames, the error of the proposed method is almost the same 
as that of the reference method, and the error is suppressed. 
On the other hand, 300-928th frames, both simulations A and 
B show an increase in error for the reference method and a 
suppression in error for the proposed method. Therefore, we 
first consider 0th-300th frames, and then 300-928th frames. 

Figure 8 shows the position of the mobile robot in the 
300th frame of simulation A and its trajectory up to that 
point. Figure 9 shows the position of the mobile robot in the 
300th frame of simulation B and its trajectory up to that 
point.  

 

Figure 8.  300th frame of simulation A. 
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Figure 9.  300th frame of simulation B. 

The blue line shows the trajectory of the robot 
autonomous navigation, while the black and red lines 
represent the trajectory of the robot position estimated by the 
reference and proposed methods, respectively. In both 
simulations A and B, the errors of the reference and proposed 
methods were almost the same in 0-300th frames. In the 
autonomous driving in 0-300th frames, there abundant of 
shape information around the driving path of the mobile 
robot. Therefore, both the reference method and the 
proposed method were able to achieve highly accurate pose 
estimation. 

Figure 10 shows the position of the mobile robot in the 
928th frame of simulation A and its trajectory up to that 
point. Figure 11 shows the position of the mobile robot in 
the 928th frame of simulation B and its trajectory up to that 
point.  

In the autonomous navigation in the 300-928th frames, 
the mobile robot navigated a straight corridor of 
approximately 50 m. The area around the autonomous 
navigation path by the robot lacks features of shape 
information, but the attribute values of water puddles are 
abundant. Therefore, the reference method, which only 
considers shape information, has a large accumulating error. 
On the other hand, the proposed method considers not only 
shape information but also attribute information, so that it 
can obtain the attribute values of water puddles even in an 
environment where the shape features are scarce, and thus 
can reduce the error. 

 

Figure 10.  928th frame of simulation A. 

 

Figure 11.  928th frame of simulation B. 

IV. CONCLUSION 

In this paper, we proposed a method to improve the 
accuracy of pose estimation by combining the likelihood of 
shape information and the likelihood of binary attribute 
information in water puddles in the likelihood function of 
particle filters. To verify the superiority of the proposed 
method, two simulation patterns with different water puddle 
arrangements were performed, and both showed superior 
results. 

As a future prospect, the accuracy of pose estimation will 
be verified by conducting autonomous navigation of the 
robot not in the simulation environment but in a real 
environment. Furthermore, when driving in a nuclear reactor 
building after a disaster, the driving surface is expected to be 
rubble and uneven, and the movement of the mobile robot 
will be three-dimensional. We will develop a system that can 
perform highly accurate pose estimation using attribute 
information even in such an environment. 
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