
  

  

    Abstract— In this paper, a progress estimation method using 

deep learning is proposed to visualize the product assembly 

process in a factory. First, the target assembly product is 

detected from images acquired from a fixed-point camera 

installed in the factory using a deep learning-based object 

detection method. Next, the detection area is cropped from the 

image. Finally, by using a classification method based on deep 

metric learning on the cropped image, the progress of the 

product assembly work is estimated as a rough progress step. In 

addition, considering the similarity of features with neighboring 

steps when learning with deep metric learning, we propose an 

adaptive loss function that learns to separate features from 

nearby steps. In experiments, an 82 [%] success rate is achieved 

for the progress estimation method using deep metric learning. 

Furthermore, the method using the adaptive loss function 

achieved a success rate of 92 [%]. Experiments were also 

conducted to verify the practicality of a series of detection, 

cropping and progress estimation. 

I. INTRODUCTION 

In recent years, shortage of labor in the manufacturing 

industry has become increasingly serious. Therefore, there is 

a need to improve productivity by increasing work efficiency 

on the production line. As a solution, automation of 

production lines using IoT and robots is being promoted. In 

particular, research on smart manufacturing is being promoted 

actively [1, 2]. However, automation has not progressed in 

high-mix, low-volume factories that produce products 

according to customer needs, and the majority of work is 

carried out manually. Such factories have not yet been 

converted to smart factories due to the lack of automated data 

capture. In particular, product assembly work requires 

changes to the production line each time product 

specifications change if automation is used. Therefore, the 

work is often performed manually, making automated 

measurement difficult. In addition, it is not desirable to install 

new measurement sensors at the site due to cost and labor 

considerations.  

In response to this, it is considered effective to introduce a 

system that automatically manages work by acquiring images 

from fixed-point cameras installed in factories and estimating 

the progress of the work. So far, research has been conducted 

on motion recognition using skeletal point information of a 

person in a time series [3] and on progress estimation by 

observing hand movements from the operator's point of view 

[4]. However, the assembly of large equipment often requires 

several days of work and the assembly sequence is not defined 

in detail, so progress estimation using worker movements and 
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time series data is not suitable because the movements might 

change from person-to-person. 

The aim of this research is to construct a system that 

estimates the progress of assembly work by focusing on the 

objects to be assembled. An overview of the proposed system 

is shown in Fig. 1. Progress estimation uses a method that 

judges which step has been reached in relation to the assembly 

progress step set earlier. 

II. USE OF METRIC LEARNING 

To construct a system that estimates which step currently 

belongs to a given step, the problem can be set up as a class 

classification problem. Deep learning methods using CNN 

(Convolutional Neural Networks) are highly accurate for 

classifying classes in images. However, the class 

classification in this assembly progress estimation is 

considered to have small differences in appearance between 

classes, and it is required to extract detailed feature 

differences and to have as much separation as possible 

between steps that are far apart. Therefore, the use of metric 

learning [5, 6], one of the machine learning methods, is 

considered. 

Metric learning is a method for learning patterns that 

transforms input data into a feature space so that the samples 

are separated into classes based on the distance or similarity 

between them. The aim of metric learning is to increase the 

distance between samples of different classes while 

decreasing 

the distance between samples of the same class. In particular, 

deep metric learning [7], which uses a multi-layer neural 

network to extract features when learning patterns, has also 

been proposed. 
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Fig. 1  Proposed method expected result 
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In general class classification, the features extracted by the 

CNN are passed through Fully Connected layer and converted 

into class affiliation probabilities using the SoftMax function. 

However, this means that the feature extraction network is 

trained without considering the distance between samples of 

the same class and other classes. Deep metric learning, on the 

other hand, can obtain discriminative features by deliberately 

increasing the distance between samples of other classes and 

decreasing the distance between samples of the same class. 

Therefore, it performs well when the samples of each class are 

small or when there are unknown classes. 

Considering the practical application in an actual factory, 

the assembly work progress estimation using our proposed 

method will require only a small amount of data to learn from. 

Therefore, we propose the use of deep metric learning, which 

can learn feature differences even with small amount of data. 

III. PROPOSED METHOD 

A.  Overview of the Proposed System 

An overview of the proposed system is shown in Fig. 3. In 

the initial phase, an object detection model is trained on a 

custom dataset to be able to detect the position of the object 

to be assembled in the image. In addition, a step estimation 

model is trained to estimate the progress of the cropped image. 

The flow of the system is to detect objects in the image 

acquired from a fixed-point camera using an object detection 

method, crop their positions and estimate their progress using 

a step estimation model based on deep metric learning. 

B.  Step Estimation Method 

The structure of the proposed step estimation method is 

shown in Fig. 2. First, the steps to be judged in the assembly 

progress are set and training data are prepared. The method is 

to cut out the part of the object from the assembly video and 

save it separately for each step. One image is randomly 

selected from the training data and an anchor sample is set. 

The positive sample is the image from the same step as the 

anchor sample, and the negative sample is the image from a 

different step. In the example in Fig. 3, the image from step 5 

is set as the anchor sample. Another image from step 5 is 

selected as a positive sample, and an image from a different 

class than the anchor sample, step 0, is selected as a negative 

sample. Next, these three images are input to a four-layer 

CNN model and then to a one-layer all-unions layer to obtain 

a 128-dimensional feature vector. The weights of the CNN 

models are shared. The parameters are updated by defining a 

loss function to increase the distance between the anchor 

sample and the positive sample and to decrease the distance 

between the anchor sample and the negative sample among 

the three feature vectors obtained. Stochastic Gradient 

Descent is used in the optimization algorithm to learn by mini 

batch.  
The loss function uses Triplet Loss [8], which calculates 

the relative distance between the anchor, positive and 

negative samples as a set of data. The equation is as follows: 

 

 

 

where  𝒅𝒑 is the distance between the anchor sample and the 

positive sample in the feature space and  𝒅𝒏 is the distance 

between the anchor sample and the negative sample. 𝒎 is an 

arbitrary constant that represents the degree of movement of 

the distance away/near work, called the margin. The 

Euclidean distance in the feature space is used to calculate the 

distance. In other words, by reducing this loss function, 

features of images at the same step can be brought closer 

together in feature space and features of images at different 

steps can be moved away from each other in feature space.  
Next, the learned CNN model is used to embed each image 

to the metric learning feature space. First, the images used for 

𝐿𝑡𝑟𝑖𝑝𝑙𝑒𝑡 = 𝑚𝑎𝑥(𝑑𝑝 − 𝑑𝑛 +𝑚 ,  0) 

Fig. 3    Flow of the proposed system 

Fig. 2    Network structure of the proposed step estimation method 

(1) 
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each step in the training are input again one by one into the 

trained model and embedded in the feature space. Once all the 

images have been converted into feature vectors, the input 

images to be estimated are also input into the learned model 

and embedded in the feature space. For these embedded data, 

the k-Nearest Neighbor algorithm is used to estimate which 

step the unknown test data belongs to. Furthermore, by 

judging errors as those whose distance from all the clusters in 
the feature space in the feature space is farther than a threshold 

value, it is possible to detect assembly errors in assembly 

work and to reduce misjudgments that occur in occlusion. 

C.  Adaptive Triplet Loss 

The estimation of progress steps in assembly operations is 

considered to be prone to misjudgment of close steps due to 

the similar features of neighboring steps. Therefore, we 

propose a method to adaptively change the value of the 

margin of Triplet Loss to be used so that it becomes larger 

when the steps are close. The formula uses a normal 

distribution so that the margin falls smoothly from nearby to 

faraway steps. The proposed 

adaptive margin formula is as follows: 

 

 

 

 

where 𝝈𝟐  is the variance of the number of steps, 𝒂  is an 

arbitrary constant representing the size of the margin,  𝒏𝒂 is 

the number of steps in the anchor sample and  𝒏𝒏  is the 

number of steps in the negative sample. The examples of 

adaptive margins when learning steps 1 and 5 as anchors are 

shown in Fig. 4. 

D.  Object Detection  

 For object detection and training data preparation, we will 

use Faster-R CNN [9] and Siam Mask [10], which have been 

validated in our research [11].  

The Faster-R CNN used in object detection has a model 

structure that discriminates whether the contents of a 

rectangle are objects or background and classifies the detected 

regions. Unlike conventional object detection methods such 

as R-CNN [12] and Fast R-CNN [13], it extracts candidate 

object regions using a CNN (Convolutional Neural Network) 

structure called RPN (Region Proposal Network) [14], which 

can significantly reduce processing time. Object detection is 

enabled by fine-tuning this pre-trained model of Faster R-

CNN with a custom dataset created for assembly products. 

 Siam Mask, used to create training data, is a mask-based 

object tracking method. This tracking method allows for 

continuous labeling of the video for training. Specifically, 

given the position of an object to be tracked in the first frame 

of the video, it will estimate the object's position in all 

subsequent frames. This allows for efficient creation of 

training datasets. 

IV. EXPERIMENTS 

Experiments were conducted to evaluate the proposed step 

estimation model and the system as a whole. A desktop PC 

was used as the object of the assembly product. The camera 

was an IO DATA network camera “Qwatch TSWR-LP” [15] 

and the pixel value was set to 1980×1080. Two cameras were 

set up in order to get more training data in a one-time 

assembly operation. The positions of the two set up cameras 

and the actual images captured are shown in Fig. 5. The 

camera in the close-up position is about 0.8 m away from the 

object and the angle is about 60° down from the horizontal. 

The camera in the high angle position is about 1.8 m away 

from the object and the angle is about 90° down from the 

horizontal. Our proposed method requires that the steps of the 

progression be set up ahead of time by yourself. The steps to 

be judged were set to 10 steps from step 0 to step 9. The steps 

are shown in Fig. 6. In the desktop PC assembly experiment, 

the steps to be judged were the 10 steps from step 0 to step 9. 

The steps are shown in Fig. 6. 

Fig. 5    The camera position that was set and the image captured 

(2) 

Fig. 6    The point of dividing steps 

𝑚 =
1

√2𝜋𝜎2
𝑒𝑥𝑝 (−

(𝑛𝑛 − 𝑛𝑎)
2

2𝜎2
) ∙ 𝑎 

Fig. 4    Examples of adaptive margins in learning step 1 and 5 
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A.  Experiments on Step Estimation 

 Experiments were conducted to confirm the effectiveness 

of the step estimation model. The experimental results 

between the method with a constant Triplet Loss margin and 

the method using an adaptive margin were compared.  

Experimental conditions. A total of 40 images were used 

for training, four at each step. To prepare the dataset, the 

location of the target desktop PC was cut out from each image 

and stored in separate folders for each step. The image size 

and number of convolution layers of the deep metric learning 

model to be implemented is the proposed model described in 

Chapter III. The constant k of the k-nearest neighbour method 

used to judge step was set to k = 4. This is because the number 

of training data to be input into the trained model in the 

progress estimation phase is four per step. In addition, as this 

study assumes a small amount of training data, the data was 

expanded by randomly adding rotation, projective 

transformation, colour change and partial truncation to the 

input images in order to avoid data bias. The actual images 

processed for data expansion are shown in Figure 7. The 

method with fixed margins and the method with adaptive 

margins were each trained for 10000 epochs. The results 

evaluated on test data are shown in Figs 8, 9 and 10. 

Fig. 8 shows the success rate against the number of learning 

epochs. With fixed margin, 82.0 [%] and 91.8 [%] correct 

responses were achieved at 10000 epochs with fixed margin 

and adaptive margin, respectively. In addition, the success 

rate for fixed margin reached its head around 3000 epoch, 

while the success rate for adaptive margin increased gently. 

Fig. 9 shows the confusion matrix of estimated and correct 

steps. It can be seen that both margin-fixing and adaptive 

margin are able to estimate steps with high accuracy. 

However, a closer look reveals that in the fixed margin case, 

misclassification with the neighbouring step occurs around 

steps 7, 8, and 9. In contrast, with adaptive margin, the 

misclassification with neighbouring steps at steps 7, 8 and 9 

is reduced and the accuracy is improved. 

Fig. 10 shows the 128-dimensional feature vector obtained 

by inputting the test data to the trained model, converted to 2 

dimensions and visualised; the dimensionality reduction 

algorithm t-SNE [16] was used for the conversion to 2 

dimensions. The colour of the plotted points indicates the 

correct step, and the better the results are clustered step by 

step, the better the results are. The present results show that 

steps 3, 4, 5, and 7, 8, 9 which were mixed in the fixed margin, 

are slightly more coherently distinguishable in the adaptive 

margin. 

These results confirm that deep metric learning can be used 

to find differences in features and make step decisions with 

high accuracy even with small amounts of data. It was also 

confirmed that the proposed adaptive margin method can 

reduce errors with neighbouring steps and improve accuracy. 

B.  Experiments on the Whole System 

Experiments were conducted on a series of steps from 

object detection to cropping and step estimation.  

Experimental conditions. The training data for the 

detection was prepared by labelling approximately 1000 

images with an annotation tool that was created. Object 

detection was implemented with Detectron2 [17], a library for 

deep learning, which enabled the detection of desktop PCs by 

fine-tuning a Faster R-CNN model pre-trained on MS COCO 

Fig. 10    Visualization of feature space using t-SNE 

Left: fixed margin, Right: adaptive margin 

Fig. 9     Confusion matrices at the predicted and true steps 

Left: fixed margin, Right: adaptive margin 

Fig. 8    Results of accuracy 
Left: fixed margin, Right: adaptive margin 

Fig. 7    Image transformation for data augmentation 
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datasets [18] with a custom dataset. In order to avoid 

misjudgments caused by worker occlusion, a method was 

used to fix and log the decision step after 20 consecutive 

frames of the same step detection result. As a result of the 

experiment, correct decisions were logged at all steps. Fig. 11 

shows the actual system in action. The yellow bounding box 

represents the detection of the object, and the red numbers on 

the right-hand side represent the steps that were judged. 

A graph with time on the horizontal axis and estimated 

steps on the vertical axis is also shown in Fig. 12. The unit of 

the horizontal axis is the Frame number. The graph shows that 

the estimated step number is going up one by one, which 

confirms the effectiveness of the system. However, although 

not continuous, misjudgments of step 0 and 1 can be seen. 

This is thought to be since the operator's head overlaps the 

desktop PC and appears black, making the object look similar 

to steps 0 and 1. In this experiment, the method to fix the 

estimated step was used when the same step was judged for 

20 consecutive frames. Therefore, occasional misjudgments 

were not a problem. The use of worker detection could further 

solve this problem. 

C.  Evaluation of Processing Speed 

Considering the practical application of this research, the 

processing speed of the proposed method was measured. 

Experimental conditions. The PC used for measuring had 

an Intel Core i7-8700 3.7GHz CPU and NVIDIA GeForce 

RTX 2080 GPU. The time taken for each processing when the 

resolution of the input image is 1920×1080 and 1280×720 is 

shown in Table I. 

Note that this time the processing speed is based on the case 

where there is only one object. Comparing detection and step 

estimation, object detection takes about 16 times longer than 

step estimation. This is thought to be related to the fact that 

step estimation uses a cropped image as input and the image 

size is small. Although the processing time is shorter with 

1280×720, there was no significant change in processing 

speed due to the difference in input image size. The overall 

system processing speed was about 5 [fps], which is 

considered sufficient for real-time measurements. 

V. CONCLUSION 

We proposed a progress estimation system for assembly 

work focusing on objects. Specifically, we proposed a 

progress estimation method that detects and crops the object 

and uses deep metric learning to judge the steps. We also 

proposed a loss function with an adaptive margin to reduce 

misjudgments between neighboring steps with similar 

features. Experiments showed the effectiveness of the method 

by evaluating the step estimation part and the whole system 

including detection. 

In the experiments on the step estimation part, the method 

with fixed margins achieved 82.0 [%], while the method with 

adaptive margins achieved 91.8 [%] accuracy. Experiments 

on the whole system successfully achieved progress 

estimation in a series of detection, cropping and step 

estimation. The processing speed was about 5 [fps], which 

was sufficient for real-time measurements. 

As a future work, the system is required to record the results 

of time-series estimation in an environment with multiple 

objects. The proposed system does not link IDs when multiple 

objects are detected. Therefore, we believe that by 

constructing a system that includes a tracking method, it will 

be possible to perform time-series connected measurements 

for each object. 

We also believe that the proposed method can be 

generalized to various assembly tasks. We would like to 

conduct experiments on other assembly products in the future. 
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