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Abstract: Point cloud fusion is an important task for applications such as 3D modeling, environment inspection, and 

digitization. Recently, deep learning has also started to deal with point cloud fusion. However, most methods in literature are 

suitable only for identical or nearly identical point clouds. In practice, the sizes of point clouds vary depending on the sensors, 

capture distances, measurement methods, and many other factors. For example, when acquiring point clouds with a wide 

range FARO FOCUS laser scanner, a large, but sparse point cloud of the entire environment is obtained. On the other hand, 

when acquiring point clouds with an RGB-D camera like the Intel RealSense, a small but dense point cloud of a specific 

location is obtained. For applications such as inspection, it is usually necessary to have dense point clouds of specific target 

regions in addition to the structure of the whole environment. The fusion of point clouds with different sizes is therefore 

essential. Accordingly, this paper focuses on the fusion of point clouds with different sizes. 
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1. Introduction

Distance image sensors are useful for tasks such as 3D

measurement, 3D modeling and robot navigation. However, all 

types of distance image sensors have their own limitations 

depending on their measurement method. It is therefore effective 

to fuse multiple distance image sensors when, for example, the 

dense point clouds of specific target regions in addition to the 

structure of the whole environment is needed. Therefore, it is 

important to register point clouds obtained from different distance 

image sensors robustly and precisely. In recent years, many deep 

learning-based approaches for point cloud registration have been 

explored. PointNetLK1) uses a deep learning model2) to extract the 

features of the entire point cloud and to obtain a rigid 

transformation matrix that to make the features of the target point 

clouds like each other. MaskNet3) is a model for estimating 

matching regions between one point cloud and the other. However, 

these methods cannot handle point clouds with very different sizes 

or orientation. PointpartNet4) handles this situation by partitioning 

point clouds via nearest neighbor estimation, matching region 

search using partial features, followed by correspondence between 

point clouds and registration. In this paper, we improve 

PointpartNet4) using color information and propose a model that 

can register with higher accuracy. 

2. Proposed Method

In this study, two types of point clouds are assumed: 1. full :

wide area point clouds acquired by e.g. LiDAR; 2. part: more 

detailed point cloud acquired by small area scanners such as RGB-

D cameras. A sample point cloud is shown in Fig. 1 respectively. 

The outline of proposed method consists of the following steps:  

1. global translation estimation by partial feature extraction

and matching region search 

2. global rotation estimation via a neural network.

3. precise local registration via color information.

Steps 1 and 2 are the same as in PointpartNet4). An image of

step 3 is shown in Fig. 2.  

2.1 Matching Region Search and Global Rotation Estimation 

First, downsampling is performed to achieve the same density 

in full and part. Then, full is partitioned to extract partial features. 

Specifically, for each point in full, n nearest-neighbour points are 

selected to create a sub-point set fullgroup, where n is the number 

of points in part. fullgroup and part are then input to PointNet1
2) 

to extract the global features, respectively. The global features are 

input to MultiLayer Perceptron (MLP1) and the matching 

likelihood Score is calculated. Scorei approaches 1 if fullgroupi 

and part are similar. The highest score ScoreH is selected and the 

corresponding fullgroupH is judged to be the matching region 

with part. The positional relationship between fullgroupH and 

part is denoted by global translation tG. Global rotation RG is 

estimated close to the true value as possible as quickly as possible 

using DirectNet5). The global features of fullgroupH and part are 

used as input to MLP2 to calculate the RG
1). Here, global features 

for global registration are calculated using PointNet2
2). 

2.2 Local Registration 

In this paper, we focus mainly on improving the accuracy of 

local registration between point clouds, as shown in Fig. 1, via the 

Fig. 1 Example of point clouds registererd in this research. 
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Fig. 2 Local registration architecture. 

C155

The Japan Society for Precision Engineering
 19th International Conference on Precision Engineering 

Nov.28(Mon.)-Dec.2(Fri.) , 2022 Nara , Japan 



use of color information. Local registration is a process for 

registering point clouds that are close in position and orientation 

after global registration has been carried out. 3D point cloud 

coordinates can be used as features, however there are cases where 

it is difficult to find the corresponding points based on the 

structure alone Therefore, color information is also used as input 

information when finding the corresponding points. The proposed 

model combines the local features of fullgroupH and part 

obtained during the matching region search as well as color 

information, using them as features for the local registration 

process. Local features are the features of each point in the point 

cloud. It is generally difficult to calculate color information in 

sparse, 3D point clouds, unlike in dense 2D images. Moreover, 

color information acquired from different range image sensors is 

often different. Thus, instead of using color directly, the standard 

deviation of color around the neighborhood of each point was 

chosen to represent the amount of discriminative. A higher 

standard deviation around a point indicates the presence of 

discriminative texture information, which enables point cloud 

matching with higher confidence. Here, the color information used 

is the standard deviation of the n/32 nearest neighbor points for 

each of the RGB channel. Finally, the closest point between 

fullgroupH and part in the feature space is determined as the 

corresponding point. The calculated point correspondences and 

3D point coordinates are input to SVD to calculate the rigid body 

transformation matrix. Local registration is repeated until the 

rigid-body transformation converges. 

2.3 Loss Function 

The model trains two networks simultaneously: matching 

region search to select the highest score, and the global 

registration. As a result, the loss function is divided into two parts: 

matching loss lossm and global registration loss lossgr. 

The matching loss lossm is the negative log-likelihood loss 

often used in classification problems. The global positioning loss 

lossgr minimizes the difference between the rigid body 

transformation matrix GG = {[RG , tG]} and its true value Ggt. It is 

therefore expressed using Mean Square Error (MSE) as follows. 

𝑙𝑜𝑠𝑠𝑚 = −𝑙𝑜𝑔(
𝑒𝑥𝑝(𝑆𝑐𝑜𝑟𝑒𝑙𝑎𝑏𝑒𝑙)

∑ 𝑒𝑥𝑝(𝑆𝑐𝑜𝑟𝑒𝑖)
𝑔
𝑖=1

 ) (1) 

𝑙𝑜𝑠𝑠𝑔𝑟 = ‖(𝑮𝑮)−1 ∙ 𝑮𝒈𝒕 − 𝑰4‖
𝐹

(2) 

Here, label is the index of the centre point fgt and is the true value. 

3. Experiments 

The experiments were described on the public dataset 

ShapeNet6), a 3D model dataset of objects with color information. 

full was a point cloud resampled from the data of ShapeNet6). The 

scale of full was 0.400m to 1.000m. part was the point cloud from 

which a quarter of full was cut off, with added noise from a normal 

distribution with mean 0 m and variance 0.05 m2. The true values 

of the rigid body transformation matrix during training were 

randomly generated with rotations [0, 90]  and translations [0, 

1.57] m. The true values of the rigid-body transformation matrix 

during testing were randomly generated with rotations [0, 180]  

and translations [0, 3.14] m. Training was done for 200 epochs 

with a batch size of 16. The number of points in full was 256 and 

the number of points in part was 64. During the testing, the 

number of points in full was 1024; the number of points in part 

was 256. Comparison experiments with PointpartNet4) were also 

carried out. Table 1 shows the results of the comparison between 

the proposed model and PointpartNet4). Experimental results 

include the estimation success rate and mean error of the rotation 

and translation estimation when matching is successful.  

The success rates for rotation and translation estimation error 

were improved from 84.07% and 87.01% to 84.45% and 87.57%, 

respectively, as compared to PointpartNet4). The mean errors for 

rotation and translation estimation were reduced from 23.136  and 

0.063 m to 21.898  and 0.059 m, respectively, as compared to 

PointpartNet4). Thus, it can be said that local registration with 

color information was effective in increasing performance. 

4. Conclusion 

In this paper, we modified PointpartNet4), a deep learning-

based positioning method that performs registration for point 

clouds of different sizes, to improve the estimation accuracy. This 

method successfully registers point clouds of different sizes by 

adding color information to the local registration. Compared to 

conventional methods, this method proved to be more robust and 

accurate. In the future, it will be verified if point cloud positioning 

on real data is feasible and color information will be input to a 

neural network for more precise registration. Also, a better way of 

representing point cloud color information will be considered. 
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Table 1. Experimental results for each method. 

Rotation  
success 

error<10   
mean error 

mean error 

on success 

PointpartNet4) 84.07% 23.136  0.222  

Proposed Method 84.45% 21.898  0.224  

Translation 
success 

error<0.1 m  
mean error 

mean error 

on success 

PointpartNet4) 87.01% 0.063 m 0.002 m 

Proposed Method 87.57% 0.059 m 0.002 m 

 


