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ABSTRACT
This paper proposes a deep learning model for point cloud registrations of different sizes. 3D point
clouds play a very important role in various fields. They have beenwidely studied, and recently deep
learning has also started to deal with point clouds. PointNet was the first deep learning model for
point cloud classification and semantic segmentation. Since then, methods based on PointNet for
tasks like point cloud registration have also been proposed. However, these methods are only suit-
able for identical or nearly identical point clouds. However, in practice, the sizes of point clouds vary
depending on the capture distance, sensor type, the environment, and many other factors. There-
fore, it is often the case that point clouds that need to be registered are of very different sizes. For
example, point clouds captured in the same environment by an omnidirectional LiDAR and an RGB-
D camera will have very different sizes. Conventional methods cannot cope with such situations. In
this paper, we propose ‘PointpartNet’, a new deep neural network based on partial feature extrac-
tion. This network enables feature extraction of partial point clouds by partitioning the point clouds.
It uses the features of partial point clouds to search for matching regions between point clouds of
different sizes. Thismakes it capable of registeringpoint clouds of different sizes. In qualitative exper-
iments, we demonstrate its high robustness and accuracy for point cloud registration of different
sizes in comparison to previous research.
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1. Introduction

Distance image sensors have been researched and devel-
oped for a long time. They are very useful for tasks
such as 3Dmeasurement, Simultaneous Localization and
Mapping (SLAM), robot navigation, and environmental
awareness. However, all types of distance image sensors
have their own limitations of range, accuracy, measure-
ment conditions, etc. Therefore, the fusion of multiple
distance image sensors is common in order to improve
robustness [1,2]. Towards this aim, robust and accu-
rate registration of point clouds obtained from different
distance image sensors is extremely important.

In recent years, deep learning techniques have yielded
excellent results in various domains. PointNet [3] is
one of the earliest deep learning models for classifica-
tion and semantic segmentation that deals directly with
point clouds. It has a model structure that is indepen-
dent of the number and order of input point clouds.
After PointNet [3], several other models based on it were
proposed [4–8].

Among them, several registration models based on
PointNet [3] have been proposed [9,10]. One of the most
representativemodels is PointNetLK [9]. In thesemodels,
the accuracy of registration tends to decrease when the
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point clouds are noisy or have different sizes when point
clouds is acquired with different range image sensor. In
order to solve this problem, a model called MaskNet [11]
was proposed. It is a model that searches for correspond-
ing regions between point clouds. However, this model
is not robust and accurate if the difference in the size of
the point clouds is too large. In this research, we pro-
pose ‘PointpartNet’, a neural network that partitions the
point cloud, extracts feature for each part, and calcu-
lates the matching likelihood score for each part. This
score predicts which part of the larger full point cloud is
most similar to the smaller part cloud. Using this result,
another neural network is used to perform the actual reg-
istration. In addition, we divide registration into global
registration and local registration to avoid falling into
local minima.

2. Related work

Many registration methods have been proposed over the
years [12–14]. Iterative Closest Point (ICP) [12] is an iter-
ative point cloud registration method. This method is
known to suffer from inferior performance in the pres-
ence of outliers and is strongly dependent on the initial
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translation and rotation of the point cloud. However, due
to its simplicity, this is one of the most widely used meth-
ods. Normal Distributions Transform (NDT) [13] is a
method that divides the point cloud space in equal inter-
vals using voxels and grids, and expresses and matches
the point clouds using the Normal Distribution obtained
for each. Therefore, the calculation cost can be reduced.
However, most of these methods are not suitable for the
registration of point clouds with vast size differences.
NDTmatching are used for the registration between large
point clouds with vast size differences. However, there
are some errors may be found on the NDT mapping
algorithm [15,16]. NDT mapping itself is very correct
when viewed from above, but when viewed from the side
there is a persistent deformation in the vertical axis [17].
Recently, many point cloud-based deep learning models
have been proposed, as discussed below:

• Classification/Semantic Segmentation: PointNet [3] is
the first deep learning model for the classification and
semantic segmentation of point clouds. PointCNN [4]
is a deep learning model for the classification and
semantic segmentation considering order of points
in point clouds. X-Conv [4] is a method of selecting
representative points from a set of points and convolu-
tionally aggregating the information of neighbouring
points. This model is more robust than PointNet [3].

• Registration: There are PointNet [3]-based methods
such as DirectNet [18] and PointNetLK [9]. Direct-
Net [18] treats the point cloud features extracted by the
neural network as input to the Multilayer Perceptron
(MLP). It is a model that derives rigid transformations
from them. However, this model can only perform
global registration. PointNetLK [9] is a model that
uses PointNet [3] to extract the features of the entire
point cloud and then compute a rigid transforma-
tion matrix to make the features of the target point
clouds similar to each other. However, thismethod has
a prerequisite that two point clouds must be almost
identical. When the point cloud sizes are vastly differ-
ent, (e.g. if one point cloud is part of the other), the
registration accuracy is reduced.

• MatchingRegion Search:Amodel calledMaskNet [11]
was proposed to calculate the matching region
between one point cloud and the other. However,
the point clouds are considered as a whole, without
looking at sub-regions in this method. As a result,
MaskNet [11], too, cannot deal with point clouds of
greatly different sizes or with point clouds of greatly
different postures, and matching often fails.

Registration method based on dictionary learning has
also been proposed [19]. However, dictionary learning

will make the method specific to the point cloud being
trained on, whereas our approach canworkwith different
point clouds in training and testing.

3. Pointpartnet

In this research, we pre-suppose the following scenario
for the two point clouds to be registered – 1. a full point
cloud extracted by a wide range scanner, such as a LiDAR
and 2. a more close-up subsection of it called part, with
greater detail, scanned by a small range scanner such as
anRGB-Dcamera.An example is given below in Figure 1.
The basic concept of PointpartNet is to create inde-
pendent point-wise sub-point clouds of full via nearest
neighbor-based partitioning. By extracting the features
of the sub-point clouds, we can find a precise matching
region between the points. Following is an overview of
the PointpartNet, consisting of two steps: (1) Part-based
feature extraction and matching region search, and (2)
Registration with the matching point cloud found in step
1. An overview of the PointpartNet architecture is shown
in Figure 2. The architecture will be explained below.

The overview of the architecture:

(1) Part-based feature extraction: In order to find a
region in full that matches with part, we partition
full and extract partial features.

(2) Matching region search: In matching region search,
we can find the position where part most matches
with full, and thus global translation tG can be
obtained.

(3) Registration: Initially, we perform global registra-
tion via the neural network and compute the global
rotation RG. Next, we use Singular Value Decom-
position (SVD) to perform more precise local reg-
istration and compute local rotation RL and local
translation tL.

3.1. Part-based feature extraction

Since point clouds are not always of the same density, we
need to downsample them to the same density. After that,
the larger full point cloud is called full = f1, . . . ,fg , and
the smaller part is called part = p1, . . . ,pn, where points
pi = (xi, yi, zi), f j = (xj, yj, zj) are 3D points. g is the
number of points in full, and n is the number of points
in part.

Themain objective of this step is to partition the point
cloud full in order to extract the part-based feature of
each part of full. For each 3D point in full, we choose the
n nearest neighbour points and create a set of g sub-point
clouds fullgroup = fullgroupi | i = 1, . . . g.
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Figure 1. Point cloud sample.

Figure 2. PointpartNet architecture.
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Figure 3. PointNet [3] architecture.

Then, we input part and fullgroup into PointNet [3]
and extract their respective features Featurep = Fp | Fp,
Featuref = Ff i | Ff i εR

d, i = 1, . . . g. PointNet [3] is used
to perform feature extraction for each input point cloud,
as shown in Figure 3. In order to acquire part-based
features independent of position, the point clouds are
translated to make sure that their centroids of gravity
coincide with the origin. Moreover, they are also normal-
ized into a unit box [9] depending on full to increase
robustness to scale. The MLP sizes used by PointNet [3]
in this research are (64, 128, 128, 512, 512). The feature of
each input point cloud is obtained by concatenating the
results of each layer followed by pooling.

3.2. Matching region search

Following the feature extraction, we search for which
regions of part and full are most similar. In essence,
this step calculates the global translation tG. By extract-
ing the global features of the partial point clouds
fullgroup and part as inputs, we can search for which
region in full matches part. We input Featurep and
Featuref intoMLP1 to calculate thematching likelihoods
Score = Scorei | i = 1, . . . g. The Scorei is set to 1 when
the fullgroupi is similar to part and 0 when it is not. The
size of MLP1 is (256, 128, 128, 1). Next, the highest score
ScoreH is selected, and the corresponding fullgroupH is
determined to be the region matching the part.

3.3. Registration

After the matching region fullgroupH is selected, regis-
tration between point clouds is performed. The registra-
tion is divided into two parts, Global registration and
Local registration. Global registration a process of fast
and rough registration. Local registration is a process of
registration with high accuracy. In the case of point cloud
registration, if the initial orientation is too different, there

is a big possibility of falling into local minima. Therefore,
we first estimate a rough pose by global registration, and
then perform local registration to reduce the possibil-
ity of falling into the local minima. Finally, the equation
for transforming point clouds using the obtained rigid
transformation matrix is given in Equation (1):

fullgroupH = Rpart + t (1)

where R is the rotation matrix and t is the translation
matrix

3.3.1. Global registration
In matching region search, we estimated tG, the position
of fullgroupH . Thus, we perform global initial registration
to obtain the global rotation RG. In this step, the proce-
dure is to find the RG close to the true value as quickly as
possible. Here, we use DirectNet [18] to perform global
registration, which is marked in Figure 2. We use the
global features (green box in Figure 2) of fullgroupH and
part as input and calculate the twist parameter ξ [9] by
MLP2. The size of the MLP2 is (512, 256, 128, 128, 64, 3).
The rotation RG is represented by an exponential map as
follows:

RG = exp
(∑

i
ξiTi

)
ξ = (ξ1, ξ2, ξ3)

T (2)

where Ti is a generator of exponential map with twist
parameters ξ∈R

3.

3.3.2. Local registration
Local registration is conducted to register point clouds
whose positions and orientations are close to each other,
i.e. after global registration has been performed in the
previous step. Here, as shown in Figure 2, the rigid trans-
formation matrix is obtained repeatedly until conver-
gence using SVD with the local features (blue box in
Figure 2) obtained from PointNet [3]. We use the local
features of part and thematched region fullgroupH to find
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Figure 4. Point clouds sample: lower left: full, upper right: part.

the corresponding points and then use the 3D coordi-
nates of part and fullgroupH as input to SVD to perform
the local registration. The local feature is the feature of
each point in the point cloud. Thus, a local feature has n
number of features, where n is the number of part and
fullgroupH points.

fullgroupH
′ = fullgroupH

{
I −

(
1
n

)
J
}

(3)

part′ = part
{
I −

(
1
n

)
J
}

(4)

where I is the unit matrix, J is a matrix with all elements
1, n is the number of points, and fullgroupH ’ and part’
are the 3D point clouds of fullgroupH and partminus the
translation component.

full
′
groupHpart

′T= U
∑

VT (5)

In this way, we decompose fullgroupH ’part’T into singular
values. whereU is the left singular vectormatrix,

∑
is the

matrix with the singular values as diagonal components,
and V is the right singular vector matrix. Furthermore,

S = diag(11|VUT |) (6)

the rotation matrix R can be obtained as follows with
Equation (6):

R = VSUT (7)

Finally, the conversion formula for fullgroupH and part is
given as follows:

fullgroupH=RL(RGpart+tG)+tL (8)

where RL is the rotation matrix and tL is the translation
matrix obtained by local registration.

3.4. Training

For training, supervision is performed in two steps:
matching region search and global registration. In addi-
tion, in order to improve the efficiency of the train-
ing process, the global registration used in the train-
ing is not fullgroupH , but fullgroupgt , which corresponds
to the ground-truth of the matching region search, as
input.

3.5. Loss function

The proposedmodel has two networks to train: matching
region search, which involves choosing the highest score,
and global registration. As a result, the loss function is
divided into 2 parts: matching loss lossm and registration
loss lossr. lossm is the negative log-likelihood loss, which
is often used in classification problems.

loss = lossm + lossr (9)

lossm = − log

(
exp(Scorelabel)∑g
i=1 exp(Scorei)

)
(10)

where label is the index of the centre point fgt , the true
value. lossr minimizes the difference between registration
GG = [RG, tG] and the ground truth transformationGgt.
Thus, we use the Mean Square Error (MSE) to express it
as follows.

lossr = ||(GG)−1 · Ggt − I4||F (11)
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4. Experiments

We conducted experiments on a public dataset as well
as real-world data captured by our FARO laser scanner.
First, we describe the experiments on the public dataset.
Training was done using the ModelNet40 [20] dataset,
which consists of 40 different Computer Aided Design
(CAD) models. The model was trained on 20 of the
training sets and tested on the other 20 sets to demon-
strate the robustness of our model to untrained object
types. Point cloud full is a resampled point cloud from
ModelNet40 [20] data. The point cloud part is a ran-
domly chosen quarter in the point cloud full, with noise
added according to a normal distribution with mean 0m
and variance 0.05m2. Point clouds sample are shown
in Figure 4. The true value of the rigid transformation
matrix used in training was randomly generated with
rotation between [0, 90]° about arbitrarily chosen axes
and random translation between [0, 1.57] m. The true
value of the rigid transformation matrix used for testing
was randomly generated with rotation between [0, 180]°
and translation between [0, 3.14] m to verify the robust-
ness of our model to untrained positions and orienta-
tions. As a criterion for the experiment, the rotation esti-
mationwas considered to be successful when the rotation
error was 10° or less, and the translation estimation was
considered to be successful when the translation error
was 0.1m or less. Experimental conditions are shown in
Table 1. The batch size used during training was 16 and
the training epochs were 200. The number of points in
the point cloud used for training were: full 256 points,
part 64 points. Due to the limitation of GPUmemory, we
use downsampled point clouds to these sizes, and yet the
accuracy is sufficient. The library used is python 3.6.10
and pytorch 1.7.0. We also compared our results with
those of MaskNet [11]. The experiments were performed
on a 3.60GHz Intel i7-9700K and a GeForce RTX2070
SUPER.

4.1. Comparison ofmatching region search

First, we conducted a matching comparison experiment
to verify the usefulness of our matching region search
model. The results are shown in Figures 5 and 6 and
Table 2. As mentioned in section 3.2, the global position
tG of the point cloud was estimated to evaluate the results
of thematching region search. In this case, the conversion

Table 1. Experimental conditions.

Batch
size

The number of
points in full

The number of
points in part

Training 16 256 64
Testing 1 1024 256

Figure 5. Matching results comparing PointpartNet and
MaskNet [11].

Figure 6. Matching histogram comparing PointpartNet and
MaskNet [11].

Table 2. Experimental results for each method.

Success
rate

Positional
mean error

(m)

Positional
mean error
on success

(m)

MaskNet [11] 36.65% 0.326 0.043
PointpartNet 98.28% 0.013 0.003

formula for fullgroupH and part is given as follows

fullgroupH ≈ part + tG (12)

It is shown in Figures 5 and 6 that the position estima-
tion error of MaskNet [11] increased rapidly when the
initial rotation of exceeded 40°. Meanwhile, the results
were stable across almost all initial rotation angles using
the proposed method, PointpartNet. Figure 5 shows the
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obtained error histograms of MaskNet [11] and the pro-
posed method, PointpartNet. For MaskNet [11], the suc-
cess rate of position estimation was 36.65%, and the
overall average error of position estimation was 0.326m.
And when the position estimation was successful, the
average error of position estimationwas 0.043m. In com-
parison, the overall results of the proposed PointpartNet
network were more stable and robust. The success rate
of position estimation was 98.28%, and the overall mean
error of position estimation was 0.013m.When the posi-
tion estimation was successful, the average error of posi-
tion estimation was 0.003m. Thus, it can be seen that
compared with MaskNet [11], the accuracy and success
rate of position estimation of PointpartNet significantly
improved and had high robustness to the initial rotation
between the point clouds. The reason for the improved
accuracy may be that PointpartNet partitions full and
focuses on the sub-point clouds, while MaskNet [11]
focuses only on each point of full, not sub-point
clouds.

4.2. Comparison of registration

In addition, we also carried out experiments for point
cloud registration. Since MaskNet [11] itself does not
include registration, we used the registration of Point-
partNet to obtain the rigid transformation matrix. The
results are shown in Figures 7–9 and Table 3.

It is shown in Figure 7(a) that the rotation error of
MaskNet [11] increased rapidly when the initial rotation
exceeded 20°. The success rate of the rotation estimation
was 29.38%, and the overall average rotation error was
68.95°. And when the rotation estimation was success-
ful, the mean rotation error is 2.61°. Again, PointpartNet
showed relatively more robust and accurate results as
compared to MaskNet [11]. However, the rotation error
tended to increase when the initial rotation exceeds 80°.
The success rate of the rotation estimation was 80.25%,
and the overall average rotation error was 26.40°. And
when the rotation estimation was successful, the mean
rotation error was 0.64°. Compared with MaskNet [11],
PointpartNet significantly improved the accuracy and
robustness of rotation estimation and proved to be more
robust to initial rotation in rotation estimation.

In addition, it can be seen in Figure 7(b) that the
translation error ofMaskNet [11] increased rapidly when
the initial rotation exceeded 20°. The success rate of
the translation estimation was 38.47%, and the overall
mean translation error was 0.417m. And when the trans-
lation estimation was successful, the mean translation
error was 0.031m. PointpartNet was, again, relatively sta-
ble as compared to MaskNet [11], but the translation
error also tended to increase when the initial rotation

Figure 7. Registration results comparing PointpartNet and
MaskNet [11].

Figure 8. Registration histogram comparing PointpartNet and
MaskNet [11] (Rotation).
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Figure 9. Registration histogram comparing PointpartNet and
MaskNet [11] (Translation).

Table 3. Experimental results for each method.

Success
rate

Rot. mean
error (°)

Rot. mean
error on
success (°)

(a) Rotation error comparison of PointpartNet andMaskNet [11]
MaskNet [11] 29.38% 68.95 2.61
PointpartNet 80.25% 26.40 0.64
(b) Translation error comparison of PointpartNet andMaskNet [11]
MaskNet [11] 38.47% 0.417 0.031
PointpartNet 82.31% 0.160 0.006

exceeds 80°. The success rate of translation estimation
was 82.31%, and the overall mean translation error was
0.160m. When the translation estimation was success-
ful, the average translation error was 0.006m. Similar
to rotation estimation, PointpartNet proved to be much
more accurate in translation estimation and more robust
to initial rotation in rotation estimation as compared to
MaskNet [11]. A sample of the registration is shown in
Figure 10. The blue point cloud is full. The red point
cloud is part.

The reason for the error could be that feature extrac-
tion using PointNet [3] is not sufficiently robust to ori-
entation changes. Therefore, in future, it is necessary
to consider an orientation-invariant feature extraction
method. In addition, ModelNet40 [20] also contained
objects with little feature, such as beds, laptops and tables.
The registration of such objects is difficult and may fail.

We also conducted a comparison experiment by
changing our local registration to ICP [12]. It can be seen

Figure 10. Registration results comparing PointpartNet and
PointpartNet+ICP.

in Figures 11 and 12, It was shown that the accuracy
of registration was reduced by changing local registra-
tion to ICP [12]. The reason for this is that ICP [12]
requires a good initial position, but DirectNet [18] is
not expected to provide the initial position required by
ICP [12].

4.3. Processing time

We estimated the processing time of each part of the reg-
istration process. The average processing time of each
process is shown in Table 4. The processing time of part-
based feature extraction was 0.306 s. The processing time
for matching region search was 0.003 and 0.005 s for
global registration. The processing time for local regis-
tration is 0.119 s.

4.4. Registration on real data

We used the network trained on ModelNet40 [20] and
experimented with a point cloud taken from real range
image sensor. The sensor we used was FARO Laser
Scanner FocusM70. The point cloud obtained by scan-
ning a part of our laboratory with the sensor, shown in
Figure 15(a), was taken as the full cloud. The part cloud
was a set of about 500 point clouds cut randomly from
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Figure 11. Registration histogram of PointpartNet+ICP.

Figure 12. Point cloud registration sample.

Table 4. Processing time of each process.

Part-based
feature
extraction

Matching
region
search

Global
registration

Local
registration

0.306 s 0.003 s 0.005 s 0.119 s

full. full and part have 1024 and 256 points, respectively.
We added the same noise to part as done in experiments
4.1 and 4.2. The results of experiments are shown in Fig-
ures 13 and 14 and Table 5. A sample of the registration
is shown in Figure 15.

The success rate of the rotation estimationwas 77.63%,
and the overall average rotation error was 26.95°. And
when the rotation estimation is successful, themean rota-
tion error is 1.13°. The success rate of translation estima-
tion was 72.37%, and the overall mean translation error

Figure 13. Registration results of PointpartNet on real data.

Figure 14. Histogram of PointpartNet on real data.

was 0.464m. When the translation estimation was suc-
cessful, the average translation error was 0.017m. Thus,
it can be seen that the proposed PointpartNet model
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Figure 15. Point cloud registration sample on real data: (b) shows full and part separated to make it easier to see.

Table 5. Experimental results for real data.

Real data
Success
rate

Mean
error

Mean error
on success

Rot. (°) 77.63% 26.95 1.13
Trans. (m) 72.37% 0.464 0.017

performed reasonably well even with real-world data
collected from a range sensor.

5. Conclusion

In this paper, we have proposed a deep-learning-based
registration method for point clouds of different sizes
with partial feature extraction. This model extracted
point cloud features by partitioning them and searching
for a suitable matching region. It succeeded in registering
point clouds with different sizes, which was not success-
fully possible with previous models. Comparison exper-
iments with previous methods proved that PointpartNet
is more robust and accurate.

In the future, we aim to improve the accuracy in real
environments and verify the usefulness of PointpartNet
with different range image sensors. Besides that, we also
aim to change the feature extraction to be less affected by
initial orientation.
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