

Abstract— In this paper, a lightweight 3D object detection

model using color and depth images is proposed. In recent years,

several studies have focused on the application of deep learning

to object detection. They use many techniques, including

improved feature extraction methods and instance segmentation,

to increase the accuracy. However, such 2D object detection has

its limitations. Other models and methods are needed to deal

with occlusion and to identify 3D positions. In contrast, there

have been many studies in this field applying deep learning to 3D

object detection. However, many of them are computationally

expensive and difficult to run in real time because they deal with

dense point clouds. In the proposed model, after feature

extraction from the color image, a sparse point cloud is created

from the range image to achieve fast object detection. Graph

convolution for point clouds and feature extraction with depth

information are also used. As a result, the proposed model

achieved 56.4 fps when using ResNet34.

I. INTRODUCTION

Detecting and recognizing objects can be applied to various
fields such as security and marketing. Therefore, it is important
to be able to perform these tasks fast and accurately because
you are able to improve the performance of the whole camera
system. In addition, sensors that can also measure depth
images, such as stereo cameras, are becoming cheaper and
more readily available.

In recent years, many methods based on deep learning have
been proposed in this field. A typical example of a method for
object detection is Mask R-CNN [1] by He et al. In R-CNN
systems [2, 3, 4] such as Mask R-CNN, object detection and
classification are performed using a network structure called a
Region Proposal Network (RPN). In Mask R-CNN, a
network—for instance, segmentation—is added to the basic
structure, such as RPN, in order to extract the position of
objects in the image more accurately. However, this method
has the problem of extremely slow processing speed. This is
because the network for locating object regions and the
network for classifying them are defined as separate models.
As mentioned above, Mask R-CNN has an additional network
structure, so even in an optimized environment, the speed is
about 5 fps, which is not sufficiently real time.

Redmon et al. proposed You Only Look Once (YOLO) [5]
as a fast object detection method using deep learning. YOLO
has been updated several times [6, 7]; the latest model is
YOLOv4 [8]. YOLO uses unified detection, which enables fast
detection. In YOLOv4, feature pyramid network (FPN) [9] is
added as a neck between the backbone network, which extracts
features, and the head part, which outputs object positions and

1The Course of Precision Engineering, School of Science and Engineering,

Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan (e-mail:

kitsukawa@sensor.mech.chuo-u.ac.jp)
2RITECS Inc., 3-5-11 Shibasaki, Tachikawa-shi, Tokyo, Japan

other information. This improves the performance of object
detection for objects of different scales. However, it has been
pointed out that this method is vulnerable to occlusion between
objects. This is a problem shared by many object detection
models for color images, such as YOLO.

In contrast, there have been many studies in this field that
have applied deep learning to 3D object detection. Among
them, PointNet [10] and PointNet++ [11] enable feature
extraction from point clouds, and models such as VoteNet [12]
and YOLO3D [13] have been proposed to apply these models
to object detection and semantic segmentation tasks. However,
most of these studies deal with dense point clouds, a task that is
computationally expensive, difficult to operate in real time,
and requires high graphic processing units (GPU) power. In
addition, most assume the use of point clouds obtained by
depth sensors such as LiDAR, are designed for large-scale
environments, and cannot be easily implemented. Another
lightweight model that uses RGB-D is Complex-YOLO [14].
However, this model also requires a sensor that can acquire a
wide range of distances because it is based on the assumption
that the point cloud from a bird's-eye view is used as an image.
In addition, this model is not suitable for indoor environments
where it is difficult to use such a sensor.

In our research, we propose a fast and lightweight 3D
object detection model using color images and depth images
obtained from an RGB-D camera. For the created point cloud,
we further use Graph Convolutional Network (GCN) [15] and
Graph Convolutional Network II (GCN II) [16] to perform
feature extraction with depth information.

In this paper, we evaluate the object detection accuracy of
the proposed model using the SUN RGB-D dataset [17], which
is a dataset for 3D object detection. We also compare and
evaluate the processing speed of each backbone network.

II. NETWORK ARCHITECTURE AND TRAINING

A. Network Architecture

The network architecture proposed in this study is shown in
Fig. 1. The network can be roughly divided into three parts: the
color feature extraction part (backbone network), the graph
creation part, and the 3D feature extraction part.

Color feature extraction part: Using existing feature
extraction models such as VGG16 [18] and ResNet [19], we
extract features from color images. The high-dimensional
features obtained by this method are used directly in the
subsequent models to utilize the features from color images for
3D object detection, a process that is necessary for class
classification and object detection. Since the purpose of this
part is to use features obtained from general color images, the

Fast 3D Object Detection with RGB-D Images

Using Graph Convolutional Network

1Masahiro Takahashi, 1Takumi Kitsukawa, 2Alessandro Moro, and 1Kazunori Umeda

same trained model as in the object detector [1–8, 20] can be
used.

Graph creation part: First, the point cloud with attribute
values of high-dimensional features obtained from color
images is converted into a graph structure with edges for 16
neighborhoods. These edges are searched with K-Nearest
Neighbor (KNN). At this time, a sparse point cloud is
generated according to the feature map, and random sampling
is performed from it. By doing this, we can fix the number of
points to be input to subsequent models and obtain the same
effect as data augmentation by random sampling.

3D feature extraction part: The point cloud is formed as a
graph structure, and 2-layer GCN and 4-layer GCN II are used
to extract features and estimate the bounding box, taking into
account the positions of neighboring points. At that time, the
4-layer GCN II was placed between the 2-layer GCN. The
reason for this arrangement is that the number of feature
dimensions of GCN II cannot be changed due to its nature.
GCN II takes the subtraction between input and output in the
same way as the residual block in ResNet. Therefore, the
number of feature dimensions of the input and output must be
the same, and the number of feature dimensions cannot be
changed. On the other hand, vanilla GCN can change the
number of feature dimensions; thus, we sandwich GCN II with
vanilla GCN. Since our model deals with the coordinates of the
point cloud, there are negative values in the input. Therefore,
TanhExp [21], which can handle negative values as well as
Leaky ReLU [22], is used as the activation function. The
output format is based on unified detection, a method common
to YOLO [5–8] and single shot detection (SSD) [20]. Unified
detection is a method that stores the coordinates of a bounding
box and the result of classifying it in a single tensor, thus
enabling simultaneous output of classifying and region
identification. As shown in Fig. 2, in the proposed model, each

3D coordinate of the output is a vector from the point of
interest to the center point of the bounding box (dx, dy, dz), the
size of the bounding box (width, height, depth), the angle of the

bounding box (φ, ψ), the confidence of the output vector, and

the classification result. The output size is the batch size x the
number of 3D points x (9 + number of classes). Finally, the
bounding box information and the classification information
are output together as a single tensor. Therefore, as compared
to the case where the localization of the bounding box and the
classification of the class are performed separately, the model
is more compact without large branches, which enables faster
object detection.

With the network structure described above, the proposed
model outputs 3D bounding boxes from color and depth
images.

B. Training and Evaluation

In the proposed model, the VGG and ResNet used in the
backbone network are pre-trained with ImageNet [23]. This
allows us to estimate 3D objects with a certain number of
pre-defined feature regions in the image.

Since the output format of the proposed model is unified
detection, a loss function similar to that of YOLO is also used
for training. This loss function is defined as the sum of the
mean squared error (MSE) loss of the vector toward the center
coordinate of the bounding box, the MSE of the size of the
bounding box, the MSE of the rotation angle of the bounding
box, and the binary cross entropy (BCE) loss of the confidence
of the vector. The loss function is:

The subscript “out” represents the output of the model, and
“tar” represents the teacher data. cosθ is obtained from the
angle θ between the vector going to the center point of the

Fig. 1 Network architecture of the proposed model

Input: color, depth image, and intrinsic parameter; Output: 3D bounding boxes and classification

Fig. 2 Output of the proposed model Fig. 3 Description of 3D IoU

bounding box and the vector of the correct answer. λbb and λnobb
are the coefficients for the loss computed when the object is
present or absent, respectively. In this case, we use λbb=1 and
λnobb=10. The reason for setting λnobb large is that if we set it
small, the loss to suppress false positives will become small,
resulting in a large number of false positives. cls is the class
classification result, which is output as a one-hot vector, so we
calculate the loss by BCE.

A typical method of selecting the best bounding box from
the obtained candidates is non-maximum suppression (NMS),
which is used in R-CNN [2]. This method is used to eliminate
bounding boxes estimated for the same object based on the

Loss =

bb {MSE((dx,dy,dz)out, (dx,dy,dz)tar)

+ MSE((width, height, depth)out, (width, height, depth)tar)

+ BCE(cos out, cos tar)

+ BCE(cls out, cls tar)}

+ nob{BCE(cos out, cos tar)}

(1)

IoU (Intersection-over-Union), a score that indicates the
degree of overlap between regions. Object detectors that
handle 3D information, such as YOLO3D, calculate the IoU
for two dimensions from two directions—the frontal direction
and the vertical direction of the sensor—and select the
bounding box by NMS. However, this method computes the
IoU twice for the same 3D bounding box, which is inefficient
for parallel computing on a GPU. In the proposed model, we
define 3D IoU, which represents the degree of overlap of the
volumes, as shown in Fig. 3, and perform NMS based on it.
The proposed model defines 3D IoUs, which represent the
degree of volume overlap, and executes NMS based on these
3D IoUs. The threshold value of IoU in NMS is 0.6, which is
the best score in the proposed model, while 0.5 was used in
YOLO and others.

III. EVALUATION RESULTS FOR PUBLIC DATASET

In this section, we describe our validation of the proposed
model through multiple verifications. For the validation, we
used the SUN RGB-D dataset [17], created by Song et al. It
contains color images of 10,335 scenes, corresponding depth
images, intrinsic parameters of the camera that captured the
images, and annotation information, such as bounding boxes.
The SUN RGB-D dataset was created based on three RGB-D

datasets: NYU depth v2 [24], Berkeley B3DO [25], and SUN
3D [26].

A. Evaluation 1: Object Detection Accuracy

To verify the object detection accuracy, we trained 10
classes of the SUN RGB-D dataset: bed, table, sofa, chair,
toilet, desk, dresser, nightstand, bookshelf, and bathtub for 100
epochs. The batch size was set to 3, the input image size was
set to 224×224 pixels, and the learning coefficient was set to
0.0001. Adaptive moment estimation (Adam) was used as the
optimization method.

Fig. 4 shows an example of successful object detection
using ground truth and the proposed model. In this scene, bed
and nightstand are given as correct answers, and we can say
that both of them are detected accurately. In particular, for bed,
the angle and size of the object are accurately detected,
indicating that it is possible to detect even large objects. In the
case of the nightstand, there is an error in estimating the center
of the object, but the size of the object is correctly estimated.

Fig. 5 shows an example of a failure. In this scene, each
object is detected, but there is a false positive in the middle of
each object. Comparing these two examples, we can see that
there is a difference in the quality of the point cloud. In the
successful case, the point cloud obtained for each object has
less noise, and the point cloud is coherent, which means that
feature extraction by GCN that considers neighbor points is
successful. On the other hand, in the failure case, the point
cloud obtained for each object is not coherent, and there is a lot
of variation in the point cloud, even in the area where there is
no object.

Table I shows the average values of the 3D IoU results for
different backbone networks. The results show that the best
results are obtained when ResNet34 is used as the backbone.
The model with layers deeper than those of ResNet34 did not
work well because the size of the input image used in this study
was too small, and the output size was insufficient. The 3D IoU
score is above 0.5, which means that the model is able to detect
objects with some accuracy; however, it is not as accurate as
the VoteNet score of 0.83 as shown in Table II, which is the
same model used for 3D object detection. The reason for this is
that VoteNet uses a dense point cloud for detection, while the
proposed model uses a sparse point cloud, which makes 3D
estimation more difficult. However, as shown in Fig. 5,
although there are many false positives, the proposed model is
able to identify the object position; thus, it is possible to solve

Fig. 4 Ground truth and model output of successful scene

 Left: ground truth; Right: model output

Fig. 5 Ground truth and model output of failure scene

 Left: ground truth; Right: model output

this problem by increasing the number of learning epochs and
adjusting the learning coefficient.

B. Evaluation 2: Object Detection Accuracy

Next, we describe the verification of the processing speed
of the proposed model. In order to verify the speed of the
proposed model, a total of 200 frames were inferred, and the
statistics were calculated using the results. Table III shows the
results of the processing speed when the backbone network
was changed.

According to these results, the median processing speed of
the model using VGG16, which is the lightest, exceeded 85 fps.
The model using ResNet34, which showed the best results in
the verification of object detection accuracy, was able to
achieve 56.4 fps. The median is the benchmark. The reason for
using the median as a benchmark here is that the minimum
value is an outlier, as can be seen from the median and standard
deviation.

Table IV shows the comparison with other methods. As
compared to other models capable of 3D object detection, the
proposed model is faster in terms of processing speed, partly
because it consists of a simple network. YOLO3D, which is the
fastest of the other models, is 40 fps using NVIDIA TITAN X,
which is a GPU with the same performance as the one used in
this study; therefore, it can be said that the proposed model
greatly surpasses these models in terms of processing speed.
One possible way to improve the accuracy while maintaining

the processing speed is to narrow the number of candidates for
the bounding box by adding a few simple layers of GCN. This
will also improve the accuracy of the estimation of the center
point of the bounding box.

C. Evaluation 3: Effect of Pre-trained Model

Finally, we will verify the impact of the trained model of
ResNet used as the backbone network by comparing the 3D
IoU with a model trained on a different dataset. As described in
Section II, the learned models used in Evaluations 1 and 2 were
created using a dataset called ImageNet, which is designed for
class classification. Therefore, a trained model using the MS
COCO dataset [27] was prepared for comparison. For this
validation, we used ResNet34 as the backbone network.

Table V shows the results of using each learned model. In
this table, “No Pre-train” indicates the results when no trained
model was used and random numbers were used as the initial
values of parameters. According to this result, the best score
was obtained with the trained model using ImageNet. It can
also be seen that the score of the trained model is higher than
that of the untrained model. In general, it is better to use trained
models with object detection datasets such as MS COCO for
object detection models like this one, so this result is contrary
to that. In the proposed model, which uses 2D features for 3D
object detection, the 3D features extracted by GCN are used to
identify the 3D position. Therefore, it is possible that the
classification results, which can be used directly for 3D, were
more advantageous to the model than the 2D features.
Furthermore, the proposed model uses unified detection as
described in Section II, which means that it does not simply
detect object positions but also classifies them.

From this, we found that the proposed model can obtain
better results by using the classification task on the trained
model, and that the features obtained from 2D are useful for 3D
object detection.

IV. OBJECT DETECTION FOR REAL ENVIRONMENT

In order to check the robustness of the proposed model
against occlusion, we conducted training and inference on real
environmental data. As a dataset for this validation, we

TABLE I. 3D IOU SCORE BY BACKBONE

Backbone name Mean 3D IoU

VGG16 0.586

ResNet18 0.603

ResNet34 0.627

ResNet50 0.606

ResNet101 0.610

ResNet152 0.581

TABLE III. THE RESULTS OF SPEED TEST

Backbone

name

Speed [fps] Standard

deviation max min mean median

VGG16 91.6 4.6 79.4 86.7 13.6

ResNet18 69.5 4.6 60.1 64.7 9.7

ResNet34 60.7 4.6 53.0 56.4 7.6

ResNet50 21.9 4.0 20.6 21.1 1.5

ResNet101 19.0 2.7 17.9 18.1 1.3

ResNet152 16.8 4.0 16.1 16.3 1.0

TABLE II. COMPARISON WITH VOTENET

Model Name Mean 3D IoU

VoteNet 0.831

Ours (ResNet34 + GCN II) 0.627

TABLE V. RESULTS OF EVALUATION 3

Dataset Name Mean 3D IoU

ImageNet 0.627

MS COCO 0.604

No Pre-train 0.584

TABLE IV. COMPARISON WITH OTHER METHODS

Model name GPU name Speed [fps]

YOLOv3 GTX 1080 Ti 74

Ours (ResNet34 + GCN II) RTX 2080 56.4

YOLO3D TITAN X 40

VoxelNet RTX 2080 4.3

VoteNet RTX 2080 3.2

collected RGB-D data of 25,506 indoor scenes in Chuo
University. We used Intel RealSense D435 to acquire the data.
This data was annotated with the correct label only for the
human region. We trained the proposed model with this data
and tried to detect people. We compared the results of this
detection with those of YOLOv4. In particular, we analyzed
the scenes in which occlusion occurred.

Fig. 6 shows a scene successfully detected people by both
YOLOv4 and the proposed model. In this scene, we can see
that YOLOv4 is able to handle occlusion. In addition to this,
we can see that the proposed model predicts the depth and
hidden parts of the scene. Fig. 7 shows a scene where YOLOv4
failed and the proposed model succeeded; YOLOv4 failed to
detect the person behind, while the proposed model detected
this person as well. Thus, the proposed model is robust against
occlusion considering the depth information because it can

detect a person who could not be detected by the 2D object
detection. Fig. 8 shows a scene where both YOLOv4 and the
proposed model failed to detect a person. The proposed
method succeeds in outputting the bounding box, but fails in
outputting the position. A possible reason for the failure of the
2D object detector is that the area of the person visible in the
image was too small to be found. On the other hand, in the
proposed model, although the target point cloud itself was
obtained, the number of points was reduced due to the use of
sparse point clouds, which made it difficult to obtain 3D
features.

These results show that the proposed model is more robust
against occlusion than the 2D object detector although it is a
lightweight model.

Fig. 6 A scene where both the proposed model and YOLOv4 succeeded to detect people

Left: the output of YOLOv4; Right: the output of the proposed model

Fig. 7 A scene where the proposed model succeeded and YOLOv4 failed to detect people

Left: the output of YOLOv4; Right: the output of the proposed model

Fig. 8 A scene where both the proposed model and YOLOv4 failed to detect people

Left: the output of YOLOv4; Right: the output of the proposed model

V. CONCLUSION

We have presented a new object detection model using

color and depth images. This achieved fast 3D object

detection, which could not be done with existing models. Our

method is a novel attempt to perform object detection in 3D

space using color features and graph convolution. This idea

has potential for application to 3D object detection by making

simple extensions to the training model with color images.

In future work, the accuracy will be improved by further

deepening and adapting to different scales.

REFERENCES

[1] K. He, G. Gkioxari, P. Doll, and R. Girshick, “Mask R-CNN,” in Proc.

of the IEEE International Conference on Computer Vision (ICCV), pp.
2980–2988, 2017.

[2] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,” in
Proc. of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pp. 580–587, 2014.
[3] R. Girshick, “Fast R-CNN,” in Proc. of the IEEE International

Conference on Computer Vision (ICCV), pp. 1440–1448, 2015.

[4] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R CNN: Towards
real-time object detection with region proposal networks,” in Journal of

IEEE Transaction on Pattern Analysis and Machine Intelligence
(TPAMI), vol. 39, no. 6, pp. 1137–1149, 2015.

[5] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look

Once: Unified, real time object detection,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.

779–788, 2016.
[6] J. Redmon and A. Farhadi, “Yolo9000: Better, faster, stronger,” in Proc.

of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), pp. 6517–6525, 2017.
[7] J. Redmon and A. Farhadi, “YOLOv3: An incremental improvement,”

in arXiv preprint arXiv:1804.02767, 2018.
[8] A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal

speed and accuracy of object detection,” in arXiv preprint

arXiv:2004.10934, 2020.
[9] T. Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie,

“Feature pyramid networks for object selection,” in Proc. of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp.

2117–2125, 2017.

[10] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “Pointnet: Deep learning on
point sets for 3d classification and segmentation,” in Proc. of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp.
652–660, 2017.

[11] C. R. Qi, H. Su, and L. J. Guibas, “Pointnet++: Deep hierarchical feature

learning on point sets in a metric space,” in Proc. of the Advances in
Neural Information Processing Systems (NeurIPS), pp. 5099–5108,

2017.

[12] C. R. Qi, O. Litany, K. He, and L. J. Guibas, “Deep Hough voting for 3D

object detection in point clouds,” in Proc. of the IEEE International

Conference on Computer Vision (ICCV), pp. 9277–9286, 2019.
[13] W. Ali, S. Abdelkarim, M. Zahran, M. Zidan, and A. E. Sallab,

“YOLO3D: End-to-end real-time 3D oriented object bounding box
detection from LiDAR point cloud,” in Proc. of the European

Conference on Computer Vision (ECCV) Workshops, 2018.

[14] M. Simon, S. Milz, K. Amende, and H. M. Gross, “Complex-YOLO: An

euler-region-proposal for real-time 3d object detection on point clouds,”

in Proc. of the European Conference on Computer Vision (ECCV), pp.
197–209, 2018.

[15] T. N. Kipf and M. Welling, “Semi-supervised classification with graph

convolutional networks,” in Proc. of International Conference on
Learning Representations (ICLR), 2016.

[16] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph
convolutional networks,” in Proc. of the International Conference on

Machine Learning (ICML), pp. 1725–1735, 2020.

[17] S. Song, S. Lichtenberg, and J. Xiao, “Sun rgb-d: A rgb-d scene

understanding benchmark suite,” in Proc. of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 567–576, 2015.

[18] K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in arXiv preprint arXiv:1409.1556,
2014.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 770–778, 2016.

[20] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C.
Berg, “SSD: Single shot multibox detector,” in Proc. of the European

Conference on Computer Vision (ECCV), pp. 21–37, 2016.

[21] X. Liu and X. Di, “TanhExp: A smooth activation function with high
convergence speed for lightweight neural networks,” in arXiv preprint

arXiv:2003.09855v2, 2020.
[22] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified

activations in convolutional network,” in Proc. of the International

Conference on Machine Learning (ICML) Deep Learning Workshop,
2015.

[23] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. F. Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp.

248–255, 2009.
[24] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor segmentation

and support inference from rgbd images,” in Proc. of the European
Conference on Computer Vision (ECCV), pp. 746–760, 2012.

[25] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T.

Darrell, “A category-level 3d object dataset: Putting the kinect to work,”
in Journal of Consumer Depth Cameras for Computer Vision, pp.

141–165, 2013.
[26] J. Xiao, A. Owens, and A. Torralba, “SUN3D: A database of big spaces

reconstructed using sfm and object labels,” in Proc. of the IEEE

International Conference on Computer Vision (ICCV), pp. 1625–1632,
2013.

[27] T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P.
Dollar, and C. L. Zitnick, “Microsoft coco: Common objects in

context,” in Proc. of the European Conference on Computer Vision

(ECCV), pp. 740–755, 2014.

