
  

  

Abstract— In this paper, a lightweight 3D object detection 

model using color and depth images is proposed. In recent years, 

several studies have focused on the application of deep learning 

to object detection. They use many techniques, including 

improved feature extraction methods and instance segmentation, 

to increase the accuracy. However, such 2D object detection has 

its limitations. Other models and methods are needed to deal 

with occlusion and to identify 3D positions. In contrast, there 

have been many studies in this field applying deep learning to 3D 

object detection. However, many of them are computationally 

expensive and difficult to run in real time because they deal with 

dense point clouds. In the proposed model, after feature 

extraction from the color image, a sparse point cloud is created 

from the range image to achieve fast object detection. Graph 

convolution for point clouds and feature extraction with depth 

information are also used. As a result, the proposed model 

achieved 56.4 fps when using ResNet34. 

I. INTRODUCTION 

Detecting and recognizing objects can be applied to various 
fields such as security and marketing. Therefore, it is important 
to be able to perform these tasks fast and accurately because 
you are able to improve the performance of the whole camera 
system. In addition, sensors that can also measure depth 
images, such as stereo cameras, are becoming cheaper and 
more readily available. 

In recent years, many methods based on deep learning have 
been proposed in this field. A typical example of a method for 
object detection is Mask R-CNN [1] by He et al. In R-CNN 
systems [2, 3, 4] such as Mask R-CNN, object detection and 
classification are performed using a network structure called a 
Region Proposal Network (RPN). In Mask R-CNN, a 
network—for instance, segmentation—is added to the basic 
structure, such as RPN, in order to extract the position of 
objects in the image more accurately. However, this method 
has the problem of extremely slow processing speed. This is 
because the network for locating object regions and the 
network for classifying them are defined as separate models. 
As mentioned above, Mask R-CNN has an additional network 
structure, so even in an optimized environment, the speed is 
about 5 fps, which is not sufficiently real time. 

Redmon et al. proposed You Only Look Once (YOLO) [5] 
as a fast object detection method using deep learning. YOLO 
has been updated several times [6, 7]; the latest model is 
YOLOv4 [8]. YOLO uses unified detection, which enables fast 
detection. In YOLOv4, feature pyramid network (FPN) [9] is 
added as a neck between the backbone network, which extracts 
features, and the head part, which outputs object positions and 
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other information. This improves the performance of object 
detection for objects of different scales. However, it has been 
pointed out that this method is vulnerable to occlusion between 
objects. This is a problem shared by many object detection 
models for color images, such as YOLO. 

In contrast, there have been many studies in this field that 
have applied deep learning to 3D object detection. Among 
them, PointNet [10] and PointNet++ [11] enable feature 
extraction from point clouds, and models such as VoteNet [12] 
and YOLO3D [13] have been proposed to apply these models 
to object detection and semantic segmentation tasks. However, 
most of these studies deal with dense point clouds, a task that is 
computationally expensive, difficult to operate in real time, 
and requires high graphic processing units (GPU) power. In 
addition, most assume the use of point clouds obtained by 
depth sensors such as LiDAR, are designed for large-scale 
environments, and cannot be easily implemented. Another 
lightweight model that uses RGB-D is Complex-YOLO [14]. 
However, this model also requires a sensor that can acquire a 
wide range of distances because it is based on the assumption 
that the point cloud from a bird's-eye view is used as an image. 
In addition, this model is not suitable for indoor environments 
where it is difficult to use such a sensor. 

In our research, we propose a fast and lightweight 3D 
object detection model using color images and depth images 
obtained from an RGB-D camera. For the created point cloud, 
we further use Graph Convolutional Network (GCN) [15] and 
Graph Convolutional Network II (GCN II) [16] to perform 
feature extraction with depth information. 

In this paper, we evaluate the object detection accuracy of 
the proposed model using the SUN RGB-D dataset [17], which 
is a dataset for 3D object detection. We also compare and 
evaluate the processing speed of each backbone network. 

II. NETWORK ARCHITECTURE AND TRAINING 

A.  Network Architecture 

The network architecture proposed in this study is shown in 
Fig. 1. The network can be roughly divided into three parts: the 
color feature extraction part (backbone network), the graph 
creation part, and the 3D feature extraction part. 

Color feature extraction part: Using existing feature 
extraction models such as VGG16 [18] and ResNet [19], we 
extract features from color images. The high-dimensional 
features obtained by this method are used directly in the 
subsequent models to utilize the features from color images for 
3D object detection, a process that is necessary for class 
classification and object detection. Since the purpose of this 
part is to use features obtained from general color images, the 
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same trained model as in the object detector [1–8, 20] can be 
used.  

Graph creation part: First, the point cloud with attribute 
values of high-dimensional features obtained from color 
images is converted into a graph structure with edges for 16 
neighborhoods. These edges are searched with K-Nearest 
Neighbor (KNN). At this time, a sparse point cloud is 
generated according to the feature map, and random sampling 
is performed from it. By doing this, we can fix the number of 
points to be input to subsequent models and obtain the same 
effect as data augmentation by random sampling. 

3D feature extraction part: The point cloud is formed as a 
graph structure, and 2-layer GCN and 4-layer GCN II are used 
to extract features and estimate the bounding box, taking into 
account the positions of neighboring points. At that time, the 
4-layer GCN II was placed between the 2-layer GCN. The 
reason for this arrangement is that the number of feature 
dimensions of GCN II cannot be changed due to its nature. 
GCN II takes the subtraction between input and output in the 
same way as the residual block in ResNet. Therefore, the 
number of feature dimensions of the input and output must be 
the same, and the number of feature dimensions cannot be 
changed. On the other hand, vanilla GCN can change the 
number of feature dimensions; thus, we sandwich GCN II with 
vanilla GCN. Since our model deals with the coordinates of the 
point cloud, there are negative values in the input. Therefore, 
TanhExp [21], which can handle negative values as well as 
Leaky ReLU [22], is used as the activation function. The 
output format is based on unified detection, a method common 
to YOLO [5–8] and single shot detection (SSD) [20]. Unified 
detection is a method that stores the coordinates of a bounding 
box and the result of classifying it in a single tensor, thus 
enabling simultaneous output of classifying and region 
identification. As shown in Fig. 2, in the proposed model, each 

3D coordinate of the output is a vector from the point of 
interest to the center point of the bounding box (dx, dy, dz), the 
size of the bounding box (width, height, depth), the angle of the 

bounding box (φ, ψ), the confidence of the output vector, and 

the classification result. The output size is the batch size x the 
number of 3D points x (9 + number of classes). Finally, the 
bounding box information and the classification information 
are output together as a single tensor. Therefore, as compared 
to the case where the localization of the bounding box and the 
classification of the class are performed separately, the model 
is more compact without large branches, which enables faster 
object detection. 

With the network structure described above, the proposed 
model outputs 3D bounding boxes from color and depth 
images. 

B.  Training and Evaluation 

In the proposed model, the VGG and ResNet used in the 
backbone network are pre-trained with ImageNet [23]. This 
allows us to estimate 3D objects with a certain number of 
pre-defined feature regions in the image.  

Since the output format of the proposed model is unified 
detection, a loss function similar to that of YOLO is also used 
for training. This loss function is defined as the sum of the 
mean squared error (MSE) loss of the vector toward the center 
coordinate of the bounding box, the MSE of the size of the 
bounding box, the MSE of the rotation angle of the bounding 
box, and the binary cross entropy (BCE) loss of the confidence 
of the vector. The loss function is: 

The subscript “out” represents the output of the model, and 
“tar” represents the teacher data. cosθ is obtained from the 
angle θ between the vector going to the center point of the 

Fig. 1     Network architecture of the proposed model 

Input: color, depth image, and intrinsic parameter; Output: 3D bounding boxes and classification 

Fig. 2     Output of the proposed model Fig. 3     Description of 3D IoU 



  

bounding box and the vector of the correct answer. λbb and λnobb 
are the coefficients for the loss computed when the object is 
present or absent, respectively. In this case, we use λbb=1 and 
λnobb=10. The reason for setting λnobb large is that if we set it 
small, the loss to suppress false positives will become small, 
resulting in a large number of false positives. cls is the class 
classification result, which is output as a one-hot vector, so we 
calculate the loss by BCE. 

A typical method of selecting the best bounding box from 
the obtained candidates is non-maximum suppression (NMS), 
which is used in R-CNN [2]. This method is used to eliminate 
bounding boxes estimated for the same object based on the  

Loss =  

bb {MSE((dx,dy,dz)out, (dx,dy,dz)tar)  

+ MSE((width, height, depth)out, (width, height, depth)tar) 

+ BCE(cos out, cos tar) 

+ BCE(cls out, cls tar)} 

+ nob{BCE(cos out, cos tar)} 

(1) 

IoU (Intersection-over-Union), a score that indicates the 
degree of overlap between regions. Object detectors that 
handle 3D information, such as YOLO3D, calculate the IoU 
for two dimensions from two directions—the frontal direction 
and the vertical direction of the sensor—and select the 
bounding box by NMS. However, this method computes the 
IoU twice for the same 3D bounding box, which is inefficient 
for parallel computing on a GPU. In the proposed model, we 
define 3D IoU, which represents the degree of overlap of the 
volumes, as shown in Fig. 3, and perform NMS based on it. 
The proposed model defines 3D IoUs, which represent the 
degree of volume overlap, and executes NMS based on these 
3D IoUs. The threshold value of IoU in NMS is 0.6, which is 
the best score in the proposed model, while 0.5 was used in 
YOLO and others. 

III. EVALUATION RESULTS FOR PUBLIC DATASET 

In this section, we describe our validation of the proposed 
model through multiple verifications. For the validation, we 
used the SUN RGB-D dataset [17], created by Song et al. It 
contains color images of 10,335 scenes, corresponding depth 
images, intrinsic parameters of the camera that captured the 
images, and annotation information, such as bounding boxes. 
The SUN RGB-D dataset was created based on three RGB-D 

datasets: NYU depth v2 [24], Berkeley B3DO [25], and SUN 
3D [26].  

A.  Evaluation 1: Object Detection Accuracy 

To verify the object detection accuracy, we trained 10 
classes of the SUN RGB-D dataset: bed, table, sofa, chair, 
toilet, desk, dresser, nightstand, bookshelf, and bathtub for 100 
epochs. The batch size was set to 3, the input image size was 
set to 224×224 pixels, and the learning coefficient was set to 
0.0001. Adaptive moment estimation (Adam) was used as the 
optimization method. 

Fig. 4 shows an example of successful object detection 
using ground truth and the proposed model. In this scene, bed 
and nightstand are given as correct answers, and we can say 
that both of them are detected accurately. In particular, for bed, 
the angle and size of the object are accurately detected, 
indicating that it is possible to detect even large objects. In the 
case of the nightstand, there is an error in estimating the center 
of the object, but the size of the object is correctly estimated.  

Fig. 5 shows an example of a failure. In this scene, each 
object is detected, but there is a false positive in the middle of 
each object. Comparing these two examples, we can see that 
there is a difference in the quality of the point cloud. In the 
successful case, the point cloud obtained for each object has 
less noise, and the point cloud is coherent, which means that 
feature extraction by GCN that considers neighbor points is 
successful. On the other hand, in the failure case, the point 
cloud obtained for each object is not coherent, and there is a lot 
of variation in the point cloud, even in the area where there is 
no object.  

Table I shows the average values of the 3D IoU results for 
different backbone networks. The results show that the best 
results are obtained when ResNet34 is used as the backbone. 
The model with layers deeper than those of ResNet34 did not 
work well because the size of the input image used in this study 
was too small, and the output size was insufficient. The 3D IoU 
score is above 0.5, which means that the model is able to detect 
objects with some accuracy; however, it is not as accurate as 
the VoteNet score of 0.83 as shown in Table II, which is the 
same model used for 3D object detection. The reason for this is 
that VoteNet uses a dense point cloud for detection, while the 
proposed model uses a sparse point cloud, which makes 3D 
estimation more difficult. However, as shown in Fig. 5, 
although there are many false positives, the proposed model is 
able to identify the object position; thus, it is possible to solve 

Fig. 4    Ground truth and model output of successful scene 

   Left: ground truth; Right: model output 

Fig. 5     Ground truth and model output of failure scene 

    Left: ground truth; Right: model output 



  

this problem by increasing the number of learning epochs and 
adjusting the learning coefficient. 

B.  Evaluation 2: Object Detection Accuracy 

Next, we describe the verification of the processing speed 
of the proposed model. In order to verify the speed of the 
proposed model, a total of 200 frames were inferred, and the 
statistics were calculated using the results. Table III shows the 
results of the processing speed when the backbone network 
was changed.  

According to these results, the median processing speed of 
the model using VGG16, which is the lightest, exceeded 85 fps. 
The model using ResNet34, which showed the best results in 
the verification of object detection accuracy, was able to 
achieve 56.4 fps. The median is the benchmark. The reason for 
using the median as a benchmark here is that the minimum 
value is an outlier, as can be seen from the median and standard 
deviation.  

Table IV shows the comparison with other methods. As 
compared to other models capable of 3D object detection, the 
proposed model is faster in terms of processing speed, partly 
because it consists of a simple network. YOLO3D, which is the 
fastest of the other models, is 40 fps using NVIDIA TITAN X, 
which is a GPU with the same performance as the one used in 
this study; therefore, it can be said that the proposed model 
greatly surpasses these models in terms of processing speed. 
One possible way to improve the accuracy while maintaining 

the processing speed is to narrow the number of candidates for 
the bounding box by adding a few simple layers of GCN. This 
will also improve the accuracy of the estimation of the center 
point of the bounding box. 

C.  Evaluation 3: Effect of Pre-trained Model 

Finally, we will verify the impact of the trained model of 
ResNet used as the backbone network by comparing the 3D 
IoU with a model trained on a different dataset. As described in 
Section II, the learned models used in Evaluations 1 and 2 were 
created using a dataset called ImageNet, which is designed for 
class classification. Therefore, a trained model using the MS 
COCO dataset [27] was prepared for comparison. For this 
validation, we used ResNet34 as the backbone network. 

Table V shows the results of using each learned model. In 
this table, “No Pre-train” indicates the results when no trained 
model was used and random numbers were used as the initial 
values of parameters. According to this result, the best score 
was obtained with the trained model using ImageNet. It can 
also be seen that the score of the trained model is higher than 
that of the untrained model. In general, it is better to use trained 
models with object detection datasets such as MS COCO for 
object detection models like this one, so this result is contrary 
to that. In the proposed model, which uses 2D features for 3D 
object detection, the 3D features extracted by GCN are used to 
identify the 3D position. Therefore, it is possible that the 
classification results, which can be used directly for 3D, were 
more advantageous to the model than the 2D features. 
Furthermore, the proposed model uses unified detection as 
described in Section II, which means that it does not simply 
detect object positions but also classifies them. 

From this, we found that the proposed model can obtain 
better results by using the classification task on the trained 
model, and that the features obtained from 2D are useful for 3D 
object detection. 

IV. OBJECT DETECTION FOR REAL ENVIRONMENT 

In order to check the robustness of the proposed model 
against occlusion, we conducted training and inference on real 
environmental data. As a dataset for this validation, we 

TABLE I.  3D IOU SCORE BY BACKBONE 

Backbone name Mean 3D IoU 

VGG16 0.586 

ResNet18 0.603 

ResNet34 0.627 

ResNet50 0.606 

ResNet101 0.610 

ResNet152 0.581 

 

TABLE III.  THE RESULTS OF SPEED TEST 

Backbone 

name 

Speed [fps] Standard 

deviation max min mean median 

VGG16 91.6 4.6 79.4 86.7 13.6 

ResNet18 69.5 4.6 60.1 64.7 9.7 

ResNet34 60.7 4.6 53.0 56.4 7.6 

ResNet50 21.9 4.0 20.6 21.1 1.5 

ResNet101 19.0 2.7 17.9 18.1 1.3 

ResNet152 16.8 4.0 16.1 16.3 1.0 

 

TABLE II.  COMPARISON WITH VOTENET 

Model Name Mean 3D IoU 

VoteNet 0.831 

Ours (ResNet34 + GCN II) 0.627 

 

TABLE V.  RESULTS OF EVALUATION 3 

Dataset Name Mean 3D IoU 

ImageNet 0.627 

MS COCO 0.604 

No Pre-train 0.584 

 

TABLE IV.  COMPARISON WITH OTHER METHODS 

Model name GPU name Speed [fps] 

YOLOv3 GTX 1080 Ti 74 

Ours (ResNet34 + GCN II) RTX 2080 56.4 

YOLO3D TITAN X 40 

VoxelNet RTX 2080 4.3 

VoteNet RTX 2080 3.2 

 



  

collected RGB-D data of 25,506 indoor scenes in Chuo 
University. We used Intel RealSense D435 to acquire the data.  
This data was annotated with the correct label only for the 
human region. We trained the proposed model with this data 
and tried to detect people. We compared the results of this 
detection with those of YOLOv4. In particular, we analyzed 
the scenes in which occlusion occurred. 

Fig. 6 shows a scene successfully detected people by both 
YOLOv4 and the proposed model. In this scene, we can see 
that YOLOv4 is able to handle occlusion. In addition to this, 
we can see that the proposed model predicts the depth and 
hidden parts of the scene. Fig. 7 shows a scene where YOLOv4 
failed and the proposed model succeeded; YOLOv4 failed to 
detect the person behind, while the proposed model detected 
this person as well. Thus, the proposed model is robust against 
occlusion considering the depth information because it can 

detect a person who could not be detected by the 2D object 
detection. Fig. 8 shows a scene where both YOLOv4 and the 
proposed model failed to detect a person. The proposed 
method succeeds in outputting the bounding box, but fails in 
outputting the position. A possible reason for the failure of the 
2D object detector is that the area of the person visible in the 
image was too small to be found. On the other hand, in the 
proposed model, although the target point cloud itself was 
obtained, the number of points was reduced due to the use of 
sparse point clouds, which made it difficult to obtain 3D 
features.  

These results show that the proposed model is more robust 
against occlusion than the 2D object detector although it is a 
lightweight model. 

 
Fig. 6  A scene where both the proposed model and YOLOv4 succeeded to detect people 

Left: the output of YOLOv4; Right: the output of the proposed model 

 
Fig. 7  A scene where the proposed model succeeded and YOLOv4 failed to detect people 

Left: the output of YOLOv4; Right: the output of the proposed model 

 
Fig. 8  A scene where both the proposed model and YOLOv4 failed to detect people 

Left: the output of YOLOv4; Right: the output of the proposed model 



  

V. CONCLUSION 

We have presented a new object detection model using 

color and depth images. This achieved fast 3D object 

detection, which could not be done with existing models. Our 

method is a novel attempt to perform object detection in 3D 

space using color features and graph convolution. This idea 

has potential for application to 3D object detection by making 

simple extensions to the training model with color images.  

In future work, the accuracy will be improved by further 

deepening and adapting to different scales. 
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