
  

  

    Abstract— In this paper, we propose a system for recognizing 

carts by attaching AR markers to them. In recent years, the 

Internet of Things (IoT) has been introduced into factories in the 

manufacturing industry. However, factories that produce a wide 

variety of products in small quantities still use carts for their 

operations, and automation has not progressed. Therefore, a 

method of attaching a low-cost AR marker to the cart and using 

a fixed-point camera to recognize the ID is considered. When 

using this method, it is necessary to improve the recognition 

performance of the marker by using image processing because 

the marker attached to the cart is small. In the proposed system, 

markers are detected using an object-detection method based on 

deep learning in images acquired by a fixed-point camera and 

recognized by a combination of cropping, preprocessing, and 

deblurring. As a result, the distance from which AR markers can 

be recognized increased from 2.9 m to 3.9 m. The recognition 

rate was improved from 12% to 81% with a distance of 1 m and 

a speed of 0.25 m/s. It has also been confirmed that the system 

can be processed online. We verified the practicality of the system 

by conducting an experiment using a cart in an actual factory. 

I. INTRODUCTION 

In recent years, the IoT has been introduced into factories in 

the manufacturing industry. As a result, the automation of 

various operations is being promoted. However, factories that 

produce a wide variety of products in small quantities use carts 

like the one shown in Fig. 1 to take parts one by one from the 

shelves and transport them to the processing location for 

processing and assembly. It is difficult to automate these 

operations, and many of the processes are done manually. In 

other words, factories using carts are not able to visualize the 

production line, and there are two main issues that need to be 

solved.  

The first issue is understanding the work process and 

progress of each worker. Without IoT, we are not able to 

understand the work content and work hours of workers in the 

factory. It is also difficult to know whether the number of 

workers for a task is appropriate. In addition, since individual 

work hours are not quantified, it is difficult to know if the work 

is being done correctly. 

The second issue is identifying and locating carts and parts. 

Carts are scattered throughout the factory and warehouse, and 

it takes time and effort to find the desired carts. In many cases, 

the design of the carts is uniform throughout the factory, and 

since the parts mounted on the carts are similar, there is a 

possibility that the carts may be misplaced. 

To solve these problems, it is thought that integrated circuit 

(IC) chips or other devices that emit radio waves can be 
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attached to the carts to keep track of their location and those 

of workers [2]. However, this solution is costly and time 
consuming to implement. A less costly solution is to attach AR 

markers to the carts, which are then photographed and read by 

a fixed-point camera in the factory to determine the position 

of the carts. However, assuming that AR markers are actually 

attached to the carts, they must be small so that they do not 

interfere with the work. Since using a small marker would 

reduce the recognition performance, it is necessary to improve 

the performance of the markers for practical use. 

Conventional studies have been conducted to improve the 

recognition performance of AR markers by improving the 

design of existing markers or proposing new marker designs 

[3] [4]. These markers have shown improved recognition 

accuracy but have hardly increased the distance for 

recognition. Also, problems such as increased marker size and 

decreased number of marker IDs can be created as compared 

to conventional markers. 

Therefore, in this paper, we aim to improve recognition 

performance by using existing AR markers and combining 

them with object detection and deblurring methods. For the 

existing AR marker, we use the ArUco marker [5]. An 

overview of the proposed system is shown in Fig. 1. In this 

paper, we describe the proposed system and verify its 

effectiveness through experiments.  

II. PROPOSED SYSTEM 

A.  Overview of the Proposed System 

The flow of the proposed system is shown in Fig. 2. From 

the captured image, we detect a marker using a deep learning 

method and crop the area around the marker. We preprocess 

the cropped image and recognize the markers by using the 

ArUco library [6]. We found that by cropping the area around 

a detected marker, the rate of recognizing distant markers 

increases. 
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Fig. 1  Proposed system illustration [1] 



  

In addition, attaching the AR marker to a cart in the factory 

means that the marker itself moves. As a result, there is a 

possibility that the acquired image will be blurred. Therefore, 

by adding a deblurring process using deep learning, we will 

construct a system that can deal with blurred images. Section 

III.C explains where to add the deblurring process.  

The ArUco library, which is used for marker recognition, 

does some simple preprocessing such as binarization and 

distortion correction for angled markers. Therefore, to add 

cropping and deblurring processes to the system seems to be 

effective because they are not processed at the library. In this 

paper, the method of directly recognizing a marker from a 

captured image by the ArUco library is described as a previous 

method. 

B.  Marker Detection Using Deep Learning 

For marker detection using deep learning, we use the object-

detection method Faster R-CNN [7]. It has a model structure 

of identifying whether the content of a rectangle is an object 

or background and classifying the detected region. Unlike 

conventional object-detection methods, such as R-CNN [8] 

and Fast R-CNN [9], this method uses a CNN (Convolutional 

Neural Network) structure called RPN (Region Proposal 

Network) [10] to extract object candidate regions; 

consequently, the processing time is greatly improved. Marker 

detection is enabled by fine-tuning the trained model of this 

Faster R-CNN with a custom dataset created for markers. 

To create a custom dataset for markers, we use Siam Mask 

[11], which is a mask-based object-tracking method that 

efficiently creates a large amount of training data. Given the 

position of an object to be tracked in the first frame of a video, 

it estimates the position of the object in all subsequent frames. 

It is faster than other deep learning–based object-tracking 

methods and can be operated in real time. 

C.  Preprocessing of Cropped Images 

After detecting the marker and obtaining the coordinates of 

the four points as described in Section II.B, we crop the area 

around the marker from the input image. The next step is to 

normalize the size of the cropped image. In this way, it is 

possible to generate a cropped image of the same size 

regardless of the distance between the camera and the marker. 

It is thought that the accuracy of marker recognition can be 

improved by sharpening the cropped image. Figure 3 (upper) 

shows the sharpening process applied to the cropped image. It 

can be seen that the contrast of the markers is clearer than in 

the original image, making it easier to recognize the shapes. 

However, since the noise in the original image is also 

sharpened, the boundary line between black and white is not 

clear in some areas. Therefore, the cropped image is first 

subjected to smoothing and then to sharpening, as shown in 

Fig. 3 (lower). As compared to the image with only the 

sharpening process, the noise is removed and the light and 

dark areas are clearer, making it easier to recognize the shape 

of the marker. 

Based on these results, we use a combination of smoothing 

and sharpening to preprocess the cropped image. 

D.  Deblurring Using Deep Learning 

For deblurring using deep learning, we use DeblurGAN-v2 

[13], a method that adapts Generative Adversarial Networks 

(GAN) [12]. 

The model structure of DeblurGAN-v2 is as follows: in 

Generator, create an image by adding the upsampled high-

dimensional feature map and the low-dimensional feature 

map, while in Discriminator, introduce PatchGAN to divide 

the generated image into patches to determine whether it is 

real or fake. In this way, the model focuses on an even small 

blur in the image. It is also capable of removing the blur from 

blurred images that are not in the training data. 

III. EXPERIMENTS 

In this section, we evaluate the proposed system. We used 

I-O Data Device’s Qwatch network camera TS-WRLP [15] to 

acquire images. We used an image resolution of 1280×720. 

All AR markers were 3[cm]×3[cm] in size, and the IDs were 

displayed on the markers so that they could be seen at a glance. 

The detectors were created by fine-tuning a Faster R-CNN 

model that had been pre-trained for the COCO dataset [16]. 

To create them, we used Detectron2 [17], a deep-learning 

library that implements object-detection algorithms. 

A.  Experiment 1: Creation of Marker Detectors 

When creating marker detectors as described in Section 

II.B, it is difficult to create detectors that can learn all of the 

ID shapes used in a factory. Therefore, in this experiment, we 

created multiple detectors with different types of markers to 

be learned. We then evaluated how many types of markers 

needed to be learned. 

Fig. 3  Upper: sharpening only, 

Lower: sharpening after smoothing 
Fig. 2  Flow of the proposed system 



  

Experimental conditions. Markers with 20 different IDs 

were used for training. For testing, we used four types of IDs: 

00, 01, 98, and 99. 00 and 01 are included in the training data, 

while 98 and 99 are not. Figure 4 shows them. The number of 

marker types (IDs) to be trained was increased to 1, 2, 3... and 

detectors were created for each marker type. We used Siam 

Mask, as described in Section II.B, to create the training data. 

Videos of markers moving back and forth over a distance of 

approximately 0.3 m to 3 m were used for training and testing. 

They were captured in a room from the same camera position. 

The video used for training contained approximately 5200 

images in 3 minutes, and the video used for testing contained 

about 900 images in 30 seconds. The hyperparameters for 

training the detectors were fixed at 0.005 for the learning rate, 

300 for the number of epochs, and 64 for the batch size. 

Figure 5 shows the detection rate according to the number 

of marker types learned. It can be seen that even if the number 

of marker types to be trained is small, it is sometimes possible 

to create detectors with high accuracy. Additionally, if the 

number of types is increased to 15 or 20, the detection rate 

increases, and the detection of unlearned markers is more 

stable. 

Even though markers with ID=98, 99 were not included in 

the training data, the detection rate was as high as that of 

ID=00, 01. This is probably because the pre-trained model of 

Faster R-CNN can create highly accurate detectors even with 

a small amount of biased training data. 

B.  Experiment 2: Evaluation of Distance for Recognition 

In this experiment, we verify that the proposed method, 

which is shown on the left of Fig. 2, increases the distance at 

which markers can be recognized by preprocessing the 

cropped area after detecting a marker. 

Experimental conditions. We used 10 kinds of marker IDs 

from 0 to 9. The distances were 0.5 m to 4.0 m from the 

camera. Ten images were taken at each distance, and the 

recognition rate was calculated. We used the marker detectors 

described in Section II.B, which were fine-tuned and created 

with a total of about 12000 custom datasets using the Siam 

Mask annotation tool. To preprocess the cropped images, we 

used a method of smoothing followed by sharpening, as 

described in Section II.C. We used a 3×3 Gaussian filter as 

described in Section II.C for smoothing and an 8-

neighborhood sharpening filter for sharpening after cropping 

around the detected marker. 

Figure 6 shows the experimental results. The success rate of 

marker recognition at each distance is shown in the figure: the 

recognition rate is over 80% up to 2.7 m, and the recognition 

rate is improved at each distance. In addition, the distance at 

which recognition became impossible increased from 3.0 m to 

4.0 m. 

From the above results, we can confirm that the distance for 

recognition of AR markers can be increased by combining 

marker detection using deep learning, neighborhood cropping, 

and preprocessing. 

C.  Experiment 3:  Evaluation of Deblurring 

In this experiment, we made the AR marker blur by sliding 

it horizontally at a certain speed. We verified that the proposed 

method with deblurring improves the recognition performance 

of the obtained blurred images. The purpose of the experiment 

was twofold: first, to evaluate the effectiveness of the 

deblurring process by applying deep learning to the blurred 

images, and second, to evaluate the recognition performance 

when the cropping process and the preprocessing (smoothing 

and sharpening) are combined with the deblurring process. 

There are two possible locations for the deblurring process: 

one for the entire input image and the other for the cropped 

image after the marker is detected. Based on the above, the 

flow of the methods to be compared in this experiment is 

Fig. 4   Relationship between number of trained marker types 

and detection rate 

Fig. 5   Relationship between number of trained marker types and 

detection rate 

Fig. 6   Relationship between distance and recognition rate 



  

shown in Fig. 7. The numbers in the figure indicate the number 

of each method; we call them Methods 1–6.  

Experimental conditions.  The experiments were 

conducted at distances of 1 m and 2 m. The speed was 

increased by 0.05 m/s, 0.10 m/s, 0.15 m/s, and 0.20 m/s; 10 

images were acquired at each speed to obtain the recognition 

success rate. The marker detectors and the preprocessing, 

smoothing, and sharpening were the same conditions as in the 

previous experiments. For the deblurring process, we used the 

trained model of DeblurGAN-v2, as described in Section II.D.      

First, we compared Methods 1, 2, and 3 to evaluate the 

effectiveness of the deblurring process. Figure 8 shows the 

relationship between speed and the recognition success rates 

at distances of 1 m and 2 m. Both at 1 m and 2 m, the 

recognition rate is improved by using the deblurring process. 

At a distance of 1 m, the recognition performance of Method 

2, which performs deblurring on the entire input image, is 

higher than that of Method 3, which performs deblurring after 

cropping. On the other hand, at a distance of 2 m, the 

recognition performance of Method 3 was higher than that of 

Method 4. This may be due to the characteristics of 

DeblurGAN-v2, which is used in the deblurring process. 

Figure 9 shows the actual deblurred images. The two images 

on the left in the figure are the results of deblurring after 

cropping using Method 3. The rightmost image in the figure is 

the result of deblurring the whole image using Method 2; it is 

enlarged for comparison with the result of Method 3. These 

results confirm the effectiveness of the process for deblurring 

images. 

Second, we compared Methods 4, 5, and 6 and evaluated 

their recognition performance when they were combined with 

the cropping, smoothing, and sharpening processes. Figure 10 

shows the relationship between speed and the recognition rate 

at distances of 1 m and 2 m. As compared to Method 4, which 

performs smoothing and sharpening after cropping, Method 5, 

which adds deblurring after cropping, and Method 6, which 

adds deblurring to the entire image, improve the recognition 

Fig. 10   Relationship between speed and recognition rate 

Upper: distance 1 m, Lower: distance 2 m  

Fig. 11    Actual image for comparison for Methods 4-6 
Upper: distance 1 m, Lower: distance 2 m  

Fig. 7    Flow of methods to be compared 

Fig. 8   Relationship between speed and recognition rate 

Upper: distance 1 m, Lower: distance 2 m  

Fig. 9   Actual deblurred image 



  

 

performance. At a distance of 1 m, the recognition 

performance of Method 6 is higher than that of Method 5. On 

the other hand, at a distance of 2 m, the recognition 

performance of Method 5 is higher than that of Method 6. 

Figure 11 shows the actual images at distances of 1 m and 2 m 

and a speed of 0.25 m/s. From left to right, the original image 

and the results after processing by Method 4, Method 5, and 

Method 6 are shown. Method 4 is hard to recognize because it 

sharpens the blurred areas. On the other hand, Method 5 and 

Method 6, which remove the blur before smoothing and 

sharpening, make it easier to read the markers. Comparing the 

images of Method 5 and Method 6, we can see that Method 6 

is better than Method 5 at a distance of 1 m. For a distance of 

2 m, the results are similar for both methods.  

We measured the processing speed of Methods 1 to 6. The 

PC used for measuring had an Intel Core i7-6700 3.4GHz CPU 

and NVIDIA GeForce GTX 1080 Ti GPU. Table I shows the 

processing speed of each method. Method 3 and Method 5 

perform deblurring after cropping, so the processing speed 

varies depending on the number of detected markers. The 

processing speed decreases as the number of detected markers 

increases: 4.0 fps for 0 markers, 2.9 fps for 1 marker, and 2.3 

fps for 2 markers. The processing speed of Method 6 was 2.2 

fps, although it is considered to take more time because marker 

detection is performed after the deblurring process or for the 

entire input image. Processing speeds of a few fps in Table I 

are thought to be sufficient for the management of carts online.  
 

D.   Experiment 4: Evaluation in an Actual Factory 

In this experiment, the effectiveness of the proposed system 

was verified by attaching the AR marker to a cart actually used 

in the factory. 

Experimental conditions. Figure 12 shows the plan view 

of the experimental environment and the attached IDs. The 

numbers in the figure indicate the IDs of the AR markers, 

which were attached to each of the two support posts of the 

cart. The camera was mounted on a pillar and pointed 

horizontally toward the ground. The height of the camera was 

the same as that of the AR marker attached to the cart. Figure 

13 shows the actual installation status of the camera. The 

experiment was conducted by capturing two videos, and the 

cart was made to move in different ways. In Route 1, the cart 

entered the pit surrounded by blue in front of the camera from 

the aisle and approached the camera; afterward, the cart was 

pulled back to the aisle and passed through the aisle. In Route 

2, when the cart passed through the aisle, it did not enter the 

pit and passed straight. After passing, it was turned around 

from the opposite direction and passed through the aisle in 

front of the camera again. These routes are shown in Fig. 12. 

The number of successfully recognized markers was 

calculated by using the AR marker recognition method alone 

(Method 1) and the proposed systems (Methods 5 and 6) for 

videos of Routes 1 and 2. This experiment was conducted 

offline. 

Figure 14 shows an image of a frame for which marker 

recognition has been successful. The yellow boundary box 

indicates a successful detection, and the blue text indicates the 

ID of the recognized marker. 

Table II shows the number of markers successfully 

recognized with Methods 1, 5, and 6 in Routes 1 and 2. In the 

video of Route 1, the number of successful recognitions 

increased for the proposed system Method 5 and Method 6, as 

compared to the AR marker recognition method alone, Method 

1. As compared with Method 5, Method 6, which deblurs the 

entire acquired image, increased the number of successful 

TABLE I.    Processing speed of each method 

Fig. 12    Outline drawing of the experimental environment 

TABLE II.    Number of successes of each route 

Fig. 13    Actual installation status of the camera 

 

Fig. 14    Image of frame that has succeeded in recognizing markers 

 



  

recognitions. In the video of Route 2, neither the AR marker 

recognition method alone nor the proposed system was able to 

recognize the marker. This is probably due to the fact that the 

cart was moving too fast for successful removal of the blur. 

However, there were several frames in which the proposed 

method succeeded in detecting markers, even though it failed 

to recognize IDs. Therefore, it can be said that the proposed 

system’s motion deblurring process and marker detection were 

also effective for Route 2. 

From the above results, it was verified that the proposed 

system is effective for videos with AR markers attached to 

actual carts in a factory. 

IV. CONCLUSION 

We proposed a recognition system for AR markers attached 

to carts in a factory. Specifically, we proposed an AR marker 

recognition method that includes marker detection, cropping, 

and a deblurring process using deep learning. In addition, we 

conducted experiments to evaluate the recognition 

performance of the AR marker–recognition method. We then 

showed the effectiveness of our system through experiments 

on the distance between the marker and the camera and 

experiments on the speed at which the marker is moved. 

In the experiments on distance, the distance at which the AR 

marker was recognized increased from 2.9 m to 3.9 m. In the 

experiments related to speed, the recognition rate increased 

from 12% to 81% for a distance of 1 m and a speed of 0.25 

m/s. The processing speed was 2 to 4 fps, which is sufficient 

for actual use in an online environment. Furthermore, we 

verified the effectiveness of the proposed system by 

conducting an experiment in a factory assuming actual use. 

As for future work, the processing speed is already practical, 

but further improvement in processing speed is required. In 

our proposed system, separate learning models are used for 

deblurring and marker detection. Therefore, we believe that 

we can improve the processing speed by combining these two 

learning models into a single learning model.  
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