# 魚眼ステレオカメラを用いた視差画像における分割スケールに着 目した路面平面と障害物高さ推定

○佐久田朝優(中央大学)大橋明 (フォルシアクラリオン・エレクトロニクス(株)) 福田大輔 (フォルシアクラリオン・エレクトロニクス(株)) Sarthak Pathak(中央大学) 梅田和昇(中央大学)

# 1. 序論

近年,運転支援システムに関する研究,開発が盛ん に行なわれている.特に環境把握は重要なタスクであ り、距離センサとして LiDAR やステレオカメラを用い た様々な手法が提案されている. ステレオカメラは安 価であり、実用面でも期待が高い. ステレオカメラを 用いた3次元点群において路面領域を推定し、障害物 を抽出する手法が研究されている. 関らは射影変換が 平面に投影されるという性質を利用した手法を提案し ている [1]. しかし、この手法では路面の傾斜が変化す る環境に対応していない.また, uv-disparity という3 次元点群を二種の2次元に圧縮して路面の推定を行う 手法が提案されている [2][3]. しかし, この手法ではカ メラが地面に対してロール角方向に傾きが無いことが 前提とされており、車が傾いた際に問題となる、色情 報のみを用いて障害物を抽出する手法として深層学習 を利用する手法 [4]~[6] も提案されているが、学習デー タから環境が変わると対応出来ないという問題が存在 する. また, ステレオカメラを使用した手法は視野角 が狭いことも安全面で問題となりうる. 我々は、視野 角の広いステレオカメラとして魚眼ステレオカメラを 提案し [7], そのカメラを応用した障害物検知システム を提案した [8]. この手法も関らの提案した手法と同様 に路面の傾斜に対応していないという問題がある. そ こで、本研究では視差画像における領域の分割の大き さにより推定される平面の違いに着目し、路面の傾斜 の変化に対応可能な路面推定、障害物抽出手法を提案 する.

#### 2. 提案手法概要

提案手法の概要を図1に示す.手法は3次元計測,路 面平面推定,障害物抽出により構成されている.3次 元計測には密な3次元情報を広範囲で取得可能な擬似 バイラテラルフィルタを用いた手法を使用する[9].ま た,路面平面推定では複数の平面をフィッティングする ことにより傾斜の変化に対応した手法を提案する.そ の際,3次元空間ではなく,ステレオカメラ特有の偶然 誤差を考慮し易い視差空間を使用する.障害物抽出で はモルフォロジー処理を行った後に距離における頻度 値を用いてクラスタリングをおこなう.

#### 

擬似バイラテラルフィルタを用いた3次元計測手法 では密な領域ベースの2眼ステレオカメラにより得ら れた3次元情報を元に高精度なSfMの情報を融合する ことにより密で高精度な3次元計測を実現している[9]. また,擬似バイラテラルフィルタを用いた3次元計測 手法では,魚眼画像の歪みを軽減するため,魚眼画像を 図2で示す正距円筒画像へと変換している.本手法で はこの正距円筒画像で融合された視差を用いるが,こ の正距円筒画像の視差空間を考えると魚眼ステレオカ メラ特有の誤差を考慮しやすいため,以降は正距円筒 画像の視差空間において処理を行う.

### 4. 階層構造を利用した路面平面推定

#### 4.1 前処理

魚眼ステレオカメラから得られた3次元情報には,は ずれ値が存在し,路面平面推定に悪影響を及ぼす.は ずれ値は周辺のデータとの値の差が大きいことから近 傍点の密度の低さから判断することが可能である.し かし,3次元で密な情報を扱っているので密度計算は 時間を要する.そこで,計算コストを抑えてはずれ値 を除去するために仰角 $\phi$ と視差 $\Delta\lambda$ の2次元空間を考 える.図3は仰角-視差空間における計測点とはずれ値 を表した図である.各方位角に対して仰角方向に探索 をし,視差の変化量がしきい値 $\Delta\lambda_{th}$ 以上の領域が仰



 $\boxtimes 1$  The flow of proposed method



⊠ 2 Equirectangular image

角の幅のしきい値  $\phi_{th}$  以下である場所をはずれ値とし て除去する.

#### 4.2 平面推定

平面推定を行う際,障害物の存在や路面の傾斜の変 化が点群に対して正しい平面を推定できない要因とな る.そこで,視差画像の分割を考える.視差画像を分 割するとその領域内に障害物と路面が同時に存在して いる可能性が減り,路面形状を平面へ近似しやすくな る.しかし,推定する領域を小さくしすぎると今度は 点群の計測時における偶然誤差の影響を受けてしまう. そのため,路面推定において適切な分割の大きさが存 在すると考えられる.視差画像において路面推定の際 に使用する領域の分割の大きさを変更し,変更前後で 推定される平面パラメータが一致する箇所が点群に対 して良く当てはまった平面であると仮定し,以下の手 法を提案する.

- Step1) 視差画像を正方形領域のブロックに分割する.ただし、正方形の一辺の長さを 2<sup>n</sup>(n ∈ N)とする.
- Step2) 各ブロックに対し図4にある点が中心 となるように2<sup>n-1</sup>の大きさのメディア ンフィルタを9箇所に適用する.
- Step3) Step2 で得られた値を用いて式最小二 乗法により式 (1) の平面パラメータを求 める.
- Step4) 各ブロックの長さを半分に分割し(一辺 の長さを2<sup>n-1</sup>とする)Step2~3を行う.
- Step5) 分割の前後での平面パラメータの類似度 を算出し、類似度が高い場合 Step5,低 い場合 Step6 を行う.
- Step6) 得られている平面パラメータは適切な分割において推定されたとし平面パラメータを確定する.
- Step7) Step4 を行い, Step5 を行う.

 $\Delta \lambda = a \cos \phi \sin \lambda + b \tan \phi \cos \lambda + c \cos^2 \lambda \qquad (1)$ 

ただし, (a, b, c)を平面パラメータ, $\lambda$ を方位角, $\phi$ を 仰角, $\Delta\lambda$ を視差とする.

この様にして得られた平面群には障害物に当てはめ られたものが存在する.そこで,得られた平面群の傾 きの変化に着目して障害物に対応する平面を除去する. 始めに図5のようにシード点を複数個用意し,各シー ド点において傾きの変化が少ない領域に対して領域を



 $\boxtimes$  3 Disparity-elevation angle space

拡張していく.最終的に得られた領域が大きいシード点 を選択し,そのシード点を拡張して得られた領域を路 面平面領域とする.

## 5. 障害物の抽出と高さ推定

#### 5.1 モルフォロジー処理

4章において得られた路面平面を用いて点群から障 害物候補を抽出する.障害物に対応する平面が推定さ れた領域での路面を定めるため,近傍の路面領域にお ける平面パラメータの平均を取り,障害物領域におけ る平面パラメータを補間する.得られた平面との視差 の差にしきい値を設け,それ以上の点を障害物とする. 次に,障害物が存在する場所を1,存在しない場所を0 とした2値画像を生成する.この画像に対して近傍に 0が多い場所は0,1が多い箇所は1とする処理を行う. この処理を行うことで小領域と穴を除去する.この様 にして得られた画像に対して連結を考慮したクラスタ リングを行う.

#### 5.2 統計処理

5.1 節において一時的なクラスタリングが行われた が、2 値画像に圧縮して考えているので、オクルージョ ンのある障害物や近くの障害物が結合してしまい、同 一の障害物として抽出されてしまう.また、擬似バイラ テラルフィルタにより路面と障害物の間にも点が計測 され、障害物として抽出されることがある.そこで、ク ラスタリングによって抽出された各障害物に対して距 離に関する頻度値を考える.頻度値の少ない点は障害 物と路面の間にある誤計測点であるとし除去する.ま た、同一の障害物は類似した距離に連続して分布して いるため、断続的な箇所が存在する場合は別の障害物 として抽出する.

## 6. 精度評価実験

## 6.1 実験条件

本実験では高さ 0.5 m の段ボールを障害物とし,障 害物の抽出が正しく行えるか検証した.撮影環境はア



🖾 4 How to split a block in disparity image



⊠ 5 Road area estimation

スファルトで覆われた平らな環境とし,評価項目を障 害物までの距離,障害物高さの精度とした.環境の概 略図を図6に示す.障害物の中心が方位角0°に写る ように障害物を設置し,障害物とカメラ間の距離1m, 2m,3mにおいて各10回計測を行った.魚眼ステレ オカメラは高さ1mの位置にピッチ角30°傾けて設置 し,SfMの移動量は0.15m直進とした.前処理のしき い値は視差方向に0.004 rad,仰角方向に15 pixelとし た.路面平面の際に用いる類似値は正規化された平面 パラメータの内積とし,しきい値を0.95とした.障害 物のクラスタリングに関しては,頻度値が60以上の点 がある領域を障害物のある領域とし,障害物のある領 域の距離の間隔が0.3m以上ある場合に分割して別の 障害物とした.

## 6.2 実験結果

実験結果を図7~9に示す. 図7は正距円筒画像と視



⊠ 6 Experimental condition



(a)Equirectangular image(b)Disparity image☑ 7 Images with the target at 1 m



(a) The front view



(b)The side view 🖾 8 Point clouds with the target at 1 m

差画像である.図8は得られた3次元情報を3次元表 示したものであり,各障害物を色で表示している.中 心部の障害物が二つに分かれているが,これは対象の 特徴が少ないためである.しかし,車が通れるかの判 断に対して分裂は影響しないことから問題にならない と考えている.また,左右に存在しない障害物が検出 されているが,これは擬似バイラテラルフィルタを用 いた計測の際に近傍で不連続な系統誤差が存在してい ることが影響している.障害物高さ,障害物までの距 離の誤差は最大で0.3 m もあるが,点群の当てはまり 具合から,障害物の誤検出が原因であるとは考えにく い.そのため,障害物高さ,障害物までの距離の誤差 は3次元計測誤差による影響が大きいと考えられる.

#### 6.3 3次元点群に対する評価実験

以上の実験により3次元計測の誤差の影響が大きい と考えられた.3次元計測の誤差と提案手法が原因の 誤差を切り分けるため、3次元点群が正しく計測され たと仮定した場合における手法の精度を評価する.対 象の障害物に対して図10のように手動で平面を当て、 障害物までの距離、高さを算出する.この値を真値と することにより、3次元点群に対する精度を評価する. 高さの場合は

$$Y\cos 30^{\circ} + Z\sin 30^{\circ} + d = 0 \tag{2}$$

を障害物の上下に当てはめ,

$$h = d_{top} - d_{bottom} \tag{3}$$

を用いて真値を算出する.障害物までの距離の場合は

 $Y\cos 120^{\circ} + Z\sin 120^{\circ} + d = 0 \tag{4}$ 

を障害物に当てはめ,

$$D = \sqrt{d^2 + 0.75^2} \tag{5}$$



(a)Mean and standard deviation of height errors



(b)Mean and standard deviation of distance errorsØ Evaluation with 0.5 height terget

を用いて真値を算出する.真値以外の条件,評価項目 は真値を変更する前の実験と同じとする.

実験の結果を図11に示す. 真値を変更する前の実験 と比較すると最大でも0.1 m と誤差が小さくなってい ることが分かる. このことから手法の精度は3次元計 測の誤差に大きく影響を受けているが, 点群に対して は精度よく当てはめが行なえていると言える.

## 7. 結論

本研究では、魚眼ステレオカメラを用いて得られた 3次元点群を利用し、視差画像の分割スケールに着目 した路面平面、障害物の高さ推定を行う手法を提案し た.実験により、傾斜の変化が少ない環境において障害 物が検出可能であることを示した.また、障害物の高 さと障害物までの距離の計測における誤差の原因は主



 $\boxtimes$  10 Manual calculation of ground truth height and distance of target obstacle





(a)Mean and standard deviation of height errors

☑ 11 Evaluation of experiment with manually calcurated ground truth values

に点群の計測誤差であり、障害物の高さと距離は計測 された点群に対しては正しく推定できていることが分 かった.今後の展望として傾斜の変化が起こる環境や オクルージョンが発生する環境において路面平面の推 定,障害物の抽出が可能か検証することが挙げられる.

## 参考文献

- 関 晃仁他:"ステレオ動画像を利用した平面領域抽出による障害物検出,"情報処理学会誌, vol. 45, no. SIG 13, pp. 17-24, 2004.
- [2] M. Liu et al., "Stereo Vision Based Road Free Space Detection," 2016 9th International Symosium on Computational Intelligence and Design(ISCID), pp. 272-276, 2016.
- [3] W. Song et al,"Real-Time Obstacles Detection and Status Classification for Collision Warning in a Vehicle Active Safety System," IEEE Transactions on Intelligent Transportation Systems (ITSS), vol. 19, no. 3, pp. 758-773,2018.
- [4] P. Li, X. Chen and S. Shen, "Stereo R-CNN Based 3D Object Detection for Autonomous Driving," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7636-7644, 2019.
- [5] B. Li et al., "GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving," 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019.
- [6] X.Chen, et al., "3D object proposals using stereo imagery for accurate object class detection," Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.
- [7] 大橋 明他:"正距円筒画像への変換を用いた魚眼ステレオ カメラの構築,"精密工学会誌, vol. 83, No. 12, pp.1085-1100, 2017.
- [8] 佐久田 朝優他:"魚眼ステレオカメラを用いた路面平面 と障害物高さ推定,"日本ロボット学会学術講演会予稿集, vol. 38, pp. 2D1-03, 2020.
- [9] 飯田 浩貴 他:"魚眼ステレオカメラの2 眼ステレオと モーションステレオの融合による距離画像計測,"日本機 械学会論文集, vol. 85, no. 875, p.19-00069, 2019.

<sup>(</sup>b)Mean and standard deviation of distance errors