
  

  

Abstract— The accuracy of scan matching-based SLAM 

strongly depends on the result of the initial alignments. In this 

paper, we improve the accuracy of scan matching-based SLAM 

by applying accurate initial alignments calculated by global 

registration using measurements from LiDAR intensity and 

water puddles as features, which are often found in damaged 

nuclear power plants. From the experimental results in the real 

environment, the proposed method can improve the accuracy of 

the map and the trajectory of the robot by taking these features 

observed from the environment into account. 

I. INTRODUCTION 

Robotic exploration is underway inside the building of 
Fukushima Daiichi Nuclear Power Plant, which was damaged 
by 2011 Tohoku earthquake and tsunami. However, a number 
of accidents have occurred during these explorations because 
of not enough information about the damage of the building. 
Therefore, it is necessary to understand the scale of the damage 
accurately by generating a map of inside the buildings. 

Environmental mapping is one of the most important 
methods to understand the structural information of the 
environment, and approaches based on simultaneous 
localization and mapping (SLAM) have been widely used for 
generating feature-based environmental maps. Among them, 
SLAM using laser scan matching has been widely used due to 
its scalability and usefulness. A typical example of the scan 
matching method is the iterative closest point (ICP)[1], which 
precisely aligns point clouds whose approximate positional 
relationships are known. 

Since the result by ICP is strongly affected by the accuracy 
of the initial alignment, it is very important to pre-calculate the 
accurate initial alignment for ICP. This initial alignment is 
often calculated by odometry, which is obtained from the 
encoder mounted on the mobile robot. However, most of the 
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mobile robots used in the exploration of the damaged nuclear 
reactor building are equipped with crawlers so that the 
odometry is not reliable since the encoder data of the crawler 
has large noises. Thus, it is not suitable for giving the initial 
alignment for ICP. In this respect, the performance of SLAM is 
improved by providing a highly accurate initial alignment 
through global registration for point clouds in this paper.  

Global registration is a typical scheme that provides a 
rough alignment between points [2][3]. Godin et al. realized 
highly accurate global registration by utilizing information 
other than shape such as color [3]. However, it is hard to use 
color as a feature for registration because inside the damaged 
nuclear plants is dark. 

In this paper, we propose a global registration method that 
utilizes LiDAR reflection intensity and information of water 
puddles, which are often found in damaged nuclear power 
plants, as environmental features. Near-infrared information 
and shape information of the environment are acquired by 
sensor fusion using a near-infrared camera and LiDAR in order 
to build accurate map information. Furthermore, by adding 
environmental features to the map generated by the proposed 
method, it is possible to visualize water puddles as dangerous 
areas, which can be used for the exploration of nuclear reactor 
buildings. 

II. SYSTEM OVERVIEW 

A. Framework 

The proposed system, shown in Fig. 1, performs scan 
matching-based SLAM and outputs the robot trajectory and 
point cloud map as the result. The robot moves in an 
environment and observes point clouds with physical features 
for n frames. The point clouds with physical features are 
described in detail in subsection II. The first step is to perform 
scan matching of the point clouds. The point clouds to be 
aligned are all combinations of point clouds from frame 0 to 
frame n-1. The point clouds are initially aligned by the 
proposed method of global registration with physical features. 
In this paper, we focus on this part. After that, the point cloud 
after the initial alignment is precisely aligned by ICP. Then, the 
robot trajectory is calculated from the result of scan matching. 
Next, pose adjustment [4] is performed on the robot trajectory. 
In the pose adjustment, the trajectory is optimized based on the 
uncertainty of the alignment result. Finally, a point cloud map 
is built by transforming the point clouds according to the 
optimized trajectory.  
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Fig. 1. System overview. 

A. Point clouds with physical features 

In this paper, characteristic physical quantities in 
environment are used as features for alignment. In addition to 
shape information (x, y, z), variables representing features are 
added to the point clouds. We use the near-infrared information 
and the LiDAR reflection intensity information as features for 
alignments. Therefore, a point pi is represented as follows.  

𝒑𝑖 = [𝑥𝑖 𝑦𝑖 𝑧𝑖 𝐼IR,𝑖 𝐼Laser,𝑖]𝑇 (1) 

where IIR,i and ILaser,i denote intensity of near-infrared and 
intensity of LiDAR, respectively. By combining LiDAR which 
can obtain point clouds including intensity with other types of 
sensors, it is possible to obtain various information in addition 
to shape information of the surrounding environment. Fujii et 
al. visualized the three-dimensional (3D) shape of puddles by 
generating point clouds with near-infrared information using a 
sensor system that combines a near-infrared camera and a 
depth camera, as shown in Fig. 2 [5]. In this paper, we 
incorporate LiDAR into sensor system in [4] and acquire point 
clouds with LiDAR intensity and near-infrared intensity to 
improve the accuracy of SLAM by taking these two features 
into account. 

  

(a) Sensor system        (b) Point cloud of puddle 

Fig. 2. Visualization of a puddle. 

II. GLOBAL REGISTRATION WITH PHYSICAL FEATURES 

A. Overview 

Our method uses fast point feature histograms (FPFH) from 
the point cloud, near-infrared information, and laser reflection 
intensity information as features for registration. FPFH is a 
vector quantity that is a histogram of shape information [2]. On 
the other hand, the near-infrared information and the laser 

reflection intensity information are scalar quantities. In this 
method, we first perform a nearest neighbor search for each 
feature to obtain point correspondences. Then, based on 
subsection III.B, we select reliable point correspondences for 
each feature. Finally, based on subsection III.C, we further 
refine the best set of selected correspondences and output rigid 
body transformations using the selected point 
correspondences. 

B. Correspondences Considering Spatial Variance 

The point correspondences that contribute to the alignment 
are preferentially selected from the set of point 
correspondences obtained by the neighbor point search based 
on each feature value. In the case of point correspondence-
based registration, if points with close feature values (i.e., IIR,i 
and ILaser,i) are clustered in a large area in the environment, they 
are unlikely to contribute to the registration. Therefore, the 
correspondences with points that have a small spatial variance 
for a particular value of a feature contribute more to the 
alignment.  

First, in a point cloud, we find the set of points that are close 
in feature value to the points belonging to a certain 
correspondence, and then calculate the spatial variance of the 
set. Then, the set of correspondences that contribute to the 
alignment is obtained by selecting the correspondences with a 
small variance. The spatial variance of the point 
correspondences is obtained by calculating the covariance 
matrix of the set of points with similar feature values of the two 
points belonging to the point correspondence and then 
summing the diagonal components of the covariance matrix. 
Because the diagonal component of the covariance matrix 
represents the variance of the point cloud in the x, y, and z 
directions, the sum of these components can be used to 
determine the variance of the point distribution. 

C.  Correspondences Considering Geometric Constraints 

Geometric relationships are taken into account and point 
correspondences satisfying the constraints are preferentially 
selected. As shown in Fig. 3, when a set of point 
correspondences is obtained from two point clouds measuring 
the same shape, the distances between the points obtained from 
the two section of the measured location (i.e. li,12, li,23, and li,34) 
should be approximately equal to the distances between the two 
points in the another point cloud (i.e. lj,12, lj,23, and lj,34), 
assuming that the correspondences are correct. In this case, the 
distances li,23 and lj,23, li,34 and lj,34 have similar size respectively, 
and the choice of correspondences is correct. In other words, if 
the distances between two corresponding points are similar, the 
set of point correspondence is geometrically selected without 
contradiction.  

Therefore, we select the subsets that satisfy the 
abovementioned geometric constraints from the point 
correspondences, and generate each of rigid body 
transformations from the correspondences that are considered 
to be more correct as follows. First, we combine all the point 
correspondences of each feature obtained in subsection III.B, 
and then generate subsets of them for all combinations. Next, 
we select only those that satisfy the geometric constraints. Each 
of rigid body transformations (R, T) are then computed by 



  

applying the following equation to the selected 
correspondences and solving the minimization problem of E. 

𝐸 =∑|𝒑𝑘𝑖 − (𝒒𝑖𝑹 + 𝑻)|
2

𝑁

𝑖=1

(2) 

• E: sum of the squared distance (i.e., evaluation value) 

• p: a point in the source point cloud 

• q: a point in the target point cloud 

• N: the number of a points in the source point cloud 

• ki: the reference scan data point corresponding  
       to the point i in the source point cloud 

• R: the rotation matrix 

• T: the translation vector 

Then, Euclidean distances between the two point clouds are 
calculated, after applying each of rigid body transformations to 
the two point clouds. Finally, optimal registration is performed 
by finally selected rigid body transformation (R, T) that 
minimize the Euclidean distance between the two point clouds. 

 

 

Fig. 3. Geometric constraint. 

III. EXPERIMENT 

A. Overview 

An environmental map is constructed by SLAM from point 
clouds with physical features measured by the sensor system 
consisting of a near-infrared camera, an RGB-D sensor, and a 
LiDAR. The experiment was conducted in the test building of 
the Naraha Center for Remote Control Technology 
Development, shown in Fig. 4. This test area has many 
characteristic shapes, such as mock-up staircases, which are 
suitable for conducting SLAM experiments. 

Fig. 5 shows the true map generated by the true trajectory 
of the robot. In order to realize a water-rich environment, 
artificial puddles were placed in the environment. In Fig. 4 and 
Fig. 5, the puddle is located at the blue ellipse. In Fig. 5, the 
purple, orange, and green lines show the robot trajectories (i.e., 
straight lines connected between measuring positions) of true 
value, conventional method, and proposed method each other. 
Note that the true trajectory is obtained by the rigid body 
transformations given by the result of the manual alignment of 
point clouds. The color of the points in Fig. 5 represents the 
magnitude of IIR; the smaller the IIR, the bluer the color, and the 
larger the IIR, the redder the color. Since the near-infrared 
sensor has a narrower measurement range than LiDAR, many 

points in the point clouds do not have near-infrared information 
and the IIR value is constant, resulting in overall red color. 

 

Fig. 4. Bird’s-eye view of experimental environment. 

    

(a) Entire map     (b) Expanded view of yellow area 

Fig. 5. Map built by true trajectory. 

B. Experimental Equipment 

Fig. 2(a) shows the experimental equipment used in our 
experiment. TABLE I shows the specifications of the robot. As 
the LiDAR sensor, we used a Velodyne LiDAR VLP-16, 
which can acquire 3D point clouds and laser reflection intensity 
of the environment. A near-infrared lens (Kowa LM8HC-SW) 
and a teleconversion lens (Raynox DCR-2025PRO) were 
attached to the near-infrared camera (BITRAN BK51-IGA). 
An Intel RealSense D415 was used for RGB-D sensor. More 
details of the sensor system are described in [5]. Here, the 
sensors are fixed to each other and the relative position of the 
measured data is known. 

TABLE I SPECIFICATION OF EXPLORATION ROBOT 

Uphill slope angle [deg] 45 

Payload [kg] 5 

Traveling speed [mm/s] 100 

Length [mm] 1000 

Width [mm] 400 

Height [mm] 200 

 

C. Experimental Result 

The proposed method and the conventional method were 
evaluated by performing SLAM and comparing the generated 
trajectories and the map. We conducted experiments under the 
same conditions using two different methods: SLAM shown in 
Fig. 1 for the proposed method, and that of SAC-IA [2] used as 
global registration for the conventional method. 

Fig. 6, TABLE II and TABLE III show that the error of the 
robot position is reduced when the proposed method is used. In 



  

addition, TABLE IV and Fig. 7 show that the accuracy of the 
map generated by the proposed method is improved. One 
possible reason for this is the improvement of the scan 
matching results between the frames where the puddle was 
measured. However, as shown in Fig. 6, the error of the robot 
position in the proposed method temporarily increased in the 
middle of the frame. The reason for this is that the places where 
measured point clouds in some frames far apart, and so the 
shape information required for registration may have been 
insufficient. Although our method improves the scan matching 
by considering features other than shape information, it has 
been found that the method does not work well when the shape 
information is extremely insufficient. One solution to this 
problem is to adapt scan matching to environments where 
shape information is not rich.  

 

 

(a) Translation error 

  

(b) Rotation error 

Fig. 6.  Comparison of errors of robot position 

TABLE II MEAN OF TRANSLATION ERRORS [m] 

SLAM without physical features 4.775 

SLAM with physical features 2.719 

TABLE III MEAN OF ANGLE ERRORS [m] 

SLAM without physical features 1.012 

SLAM with physical features 0.744 

TABLE IV MEAN OF MAP ERRORS [m] 

SLAM without physical features 7.134 

SLAM with physical features 4.660 

 

 

(a) SLAM without physical features 

 

 

(b) SLAM with physical features 

Fig. 7. Built map by SLAM. 

IV. CONCLUSIONS 

In this paper, we propose a method to generate an 
environmental map by using LiDAR reflection intensity and 
the water puddles as features. In our method, the matching 
accuracy is improved by considering features other than shape 
in the selection of point correspondences in global registration. 
In the future, we will address the problem that the method does 
not work well in an environment with poor shape information. 
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