
  

  

Abstract— This paper proposes a method for detecting rust 

inside pipes using deep learning. In recent years, the number of 

pipes that have passed their useful life has been increasing, and 

earthworm-type robots have been developed to perform 

regularly inspections of sewage pipes. The images of the sewage 

pipe taken by the robot are trained on a Variational Auto 

Encoder, which is an unsupervised learning model, to detect 

abnormalities by taking the difference between the input image 

and the output image. In addition, the trained Residual Network 

is used to estimate the location of anomalies. 

 

I. INTRODUCTION 

Sewage pipes are an important infrastructure in 
environmental protection and sanitation maintenance. 
However, in recent years, aged pipes that have passed 50 years 
have increased. Since such pipes cause water leakage and road 
collapses, regular inspection of the sewage pipe is required. 
Therefore, earthworm-type robots for pipe inspection as shown 
in Fig. 1 have been developed [1][2]. This robot is equipped 
with a camera on its head, which enables it to acquire images 
of the inside of sewage pipes. 

In this paper, we focus on pressure pipes, which account for 
5 to 10% of all sewage pipes. Compared with conventional 
sewage pipes, pressure pipes are less restricted by topography 
and can be configured relatively freely. In addition, the defects 
of pressure pipes differ depending on their materials: polyvinyl 
chloride pipes are deformed by soil pressure, and cast iron 
pipes have rust on the inner surface. It is necessary to detect 
these deformations and rusts from the image and determine 
their positions on the image. 

Due to the recent development of deep learning, its 
practical application to the field of anomaly detection, such as 
the inspection of industrial products, has been actively 
developed [3]. In anomaly detection problems, it is difficult to 
perform supervised learning because the number of abnormal 
data is much smaller than that of normal data. For this reason, 
unsupervised learning using only normal data is often used, and 
any deviation from normal is considered as an abnormality. 
Therefore, it is effective to solve this problem as an anomaly 
detection problem where the defective part is considered as an 
anomaly in the inspection of the inside of a pipe. 

Based on the above, this paper focuses on the detection of 
rust adhering to the cast iron pipe in the pressure pipe using 
images. In recent years, there has been a lot of research in the 
field of image processing on anomaly detection using Auto 
Encoder and object recognition using Residual Network 
(ResNet)[4], etc. In this research, we will detect rust using 
Variational Auto Encoder(VAE)[5] and estimate the location 
of anomalies using ResNet. 

 
 

Fig. 1 Earthworm Robot [1][2] 
 

II. PROPOSED METHOD 

A. Outline of Proposal Method 

The flow of the proposed method is as follows. First, the 
VAE learns the normal images (images without rust) from the 
images taken by the earthworm robot. Next, the trained VAE 
is used to compute a score that indicates the degree of 
abnormality of the input image, and then the abnormality is 
detected. In addition, the input and output images of VAE are 
input to ResNet, and its middle layer is extracted to estimate 
the anomalies. 

When detecting anomalies using VAE, the reconstruction 
of the anomalous image may be distorted, and it may be 
difficult to identify the location of the anomaly in the image. 
Therefore, we use ResNet as well as VAE to detect 
abnormalities. 

B. Rust Detection Using VAE 

In this paper, we use VAE to detect rust on the inside of 
pipes. VAE is a network that adopts the framework of Bayesian 
inference to the usual Auto Encoder (AE), as shown in Fig. 2 
[4]. 

AE is a neural network that obtains the features (latent 
variables) representing the input images by dimensionality 
reduction using Encoder, and reconstructs the images using the 
latent variables by Decoder. On the other hand, VAE outputs 
the mean and variance of the latent variables by assuming a 
probability distribution for the latent variables obtained by the 
encoder. Using these means and variances, the Decoder 
restores the image. 
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Fig. 2 Variational AutoEncoder 

 
In this paper, anomaly detection is performed by taking the 

difference between the input image and the output image 
obtained by VAE. 

 

C. Estimation of Anomaly Location Using ResNet 

ResNet is a convolutional neural network for general 

object recognition, which is characterized by its very deep 

layers [5]. In general, the deeper the layers of a neural network, 

the higher the accuracy, but when the layers are extremely 

multi-layered, the product of the derivatives becomes too 

small, and the gradient vanishing problem occurs. ResNet is a 

model that eliminates this vanishing gradient problem by 

providing input shortcuts and calculating the residuals from 

the conventional output, thus enabling efficient training of 

very deep neural networks. 

In this paper, we input each of the input and output images 

of the VAE into ResNet50, a trained 50-layer ResNet, and 

extract the first layer of each intermediate layer. The first layer 

of each intermediate layer is extracted, and the anomalies are 

estimated by taking the difference between the input and 

output intermediate layers. By extracting the first layer, we 

can find out where on the image contributed to the output of 

ResNet. 

 

 
Fig. 3 Residual Network 

 

III. GENERATION OF DATA THAT IMITATES RUST INSIDE A 

PIPE 

In order to learn and conduct experiments for anomaly 
detection, images of the inside of a pressure pipe are necessary. 
However, it is difficult to collect data of the inside of a 
pumping pipe at present. In this paper, two types of data that 
mimic a pumping pipe are generated and used for the 
experiment together with a 10-minute video of the inside of the 
pumping pipe that is currently available. 

The first data set consists of images of round stickers of 
various colors attached to the inner surface of a commercial 
polyvinyl chloride pipe (Dataset A). This data set consists of 
two datasets: one with stickers and the other without stickers 
on the inner surface. Examples of the generated data are shown 
in Fig. 4 and 5. The normal data is considered to be relatively 
easy to detect abnormality because the tube has no pattern. 

The second type of data set is images of a transparent pipe 
with a newspaper wrapped around it and stickers placed on top 
of it (Dataset B). As in Dataset A, the data with stickers is 
considered abnormal and the data without stickers is 
considered normal. Fig. 6 and Fig. 7 show examples of the data 
set B. Compared to the first set, the patterns are more 
complicated, and the difficulty of detecting abnormalities is 
considered to be higher. 

Finally, the actual images in the pressure pipe is designated 
as Dataset C. However, since there is no cast iron pipe in this 
dataset, and it is not known whether there are any specific 
defects or not, the experiment is conducted assuming that joints 
between pipes and holes are defects. Therefore, we consider 
joints between tubes and holes as defects. Examples of normal 
and abnormal data are shown in Fig. 8 and 9. 

 

 

Fig. 4 Image example (Dataset A, normal data) 
 

 

Fig. 5 Image example (Dataset A, anomaly data) 
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Fig. 6 Image example (Dataset B, normal data) 

 

 
Fig. 7 Image example (Dataset B, anomaly data) 

 

 
Fig. 8 Image example (Dataset C, normal data) 

 

 
Fig. 9 Example image (Dataset C, anomaly data (joints are 

considered anomaly)) 

IV. EXPERIMENTS OF ANOMALY DETECTION AND DEFECT 

LOCATION ESTIMATION INSIDE PIPES 

A. Experimental Conditions 

Using the proposed method, we conducted experiments to 

detect and estimate the location of abnormalities in pipes. We 

used the three data sets described in section 3. The number of 

training data is about 3,000 for data set A, 10,000 for data set 

B, and 18,000 for data set C. The number of epochs is set to 30 

and 10. The dimensions of the latent variables were set to 32, 

and the batch size was set to 16 for dataset A and 32 for datasets 

B and C. For ResNet50, the trained model of Pytorch [6] was 

used. The following equation (1) was used as the loss function, 

and Adam [7] was used for optimization. 

 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝐿𝐾𝐿 (1) 

𝐿𝑟𝑒𝑐𝑜𝑛 =∑{−𝑝 log 𝑞 − (1 − 𝑝) log(1 − 𝑞)} (2) 

𝐿𝐾𝐿 =
1

2
∑(−2𝜎 + 𝜇2 + 𝜎2 − 1) (3) 

 

𝐿𝑡𝑜𝑡𝑎𝑙 : loss function, 𝐿𝑟𝑒𝑐𝑜𝑛 : reconstruction loss, 𝐿𝐾𝐿 : KL 

divergence, p: pixel value of input image, q: pixel value of 

output image, μ: mean vector of latent variables, σ: standard 

deviation vector of latent variables 

B. Experimental Results 

Fig. 10, 11, and 12 show the experimental results of the 
VAE input image, output image, their differences, and the 
estimation of anomalies by ResNet50. The images are, in order 
from the first row, the input image, the output image, the 
difference image, and the middle layer of ResNet. The value of 
the intermediate layer of the difference image and ResNet is 
smaller when the color is blue, and higher when the color is 
closer to red. The score calculated by summing the pixel values 
of the difference image is shown in Tables 1, 2, and 3. The 
numbers in Tables 1, 2, and 3 are ones counted from the left in 
Fig. 10, 11, and 12. 

From Fig. 10, it can be seen that there are images in which 
the reconstruction of the VAE is particularly broken in the first, 
third, and fourth images from the left. Table 1 also shows that 
the anomaly level of these three images is high. This may be 
due to the lack of training data or the insufficient adjustment of 
hyperparameters. However, if we look at the middle layer of 
ResNet, we can see that even if the reconstruction of the VAE 
is broken, the areas with stickers are highlighted in red. 
Therefore, it can be said that it is possible to estimate the 
anomalies using the middle layer of ResNet. 

Looking at Fig. 11, we can see that the input and output 
difference images for the first, second, third, and eighth normal 
data are generally blue. The difference images for the fourth, 
fifth, sixth, and seventh images show that the reconstructions 
near the stickers are broken and are highlighted in red. This 
suggests that the VAE performed better than dataset A. This is 
because dataset B has a larger number of training data than 
dataset A. In addition, the extraction results of the middle layer 
of ResNet show that the areas where stickers are applied are 
shown in red, but some areas are misidentified or not 
emphasized, such as the images No. 5 and No. 7. This is 
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thought to be due to the fact that some parts of the VAE 
reconstruction have been corrupted. In addition, when the 
sticker is located far away from the camera, as shown in No. 7, 
the image becomes darker and it is difficult to identify the 
sticker with dark color. 

Fig. 12 shows that the reconstruction of the VAE is 
relatively good due to the large number of training data. Table 
3 shows that the minimum score of the abnormal data is 195 
and the maximum score of the normal data is 173, suggesting 
that the thresholding can discriminate between abnormal and 
normal data. 

Based on these results, it can be concluded that VAE can 
be used to detect anomalies even in complex patterns in pipes, 
if a sufficient amount of data is collected by threshold 
processing. In addition, it ca be said that the feature extraction 
of the anomalies could be sufficiently performed by the 
convolution process of the trained ResNet. 

 

Fig. 10 Experimental results of VAE and ResNet (Dataset A) 

 

Table 1  Anomaly score (Dataset A) 

Number 1 2 3 4 

score 654 269 760 796 

Number 5 6 7 8 

score 294 285 304 273 

 

 
Fig. 11 Experimental results of VAE and ResNet (Dataset B) 

 

Table 2  Anomaly score (Dataset B) 

Number 1 2 3 4 

score 172 145 118 435 

Number 5 6 7 8 

score 364 325 179 137 

 
Fig. 12 Experimental results of VAE and ResNet (Dataset C) 

 

Table 3 Anomaly score (Dataset C) 

Number 1 2 3 4 

score 195 122 270 162 

Number 5 6 7 8 

score 418 173 135 238 

 

V. CONCLUSION 

In this paper, we proposed a method for detecting and 

estimating the location of rust adhering to the inside of a pipe, 

detecting the anomaly by taking the difference between the 

input and output images of VAE, and estimating the location 

of the anomaly using ResNet50. The results showed that the 

threshold treatment was sufficient to detect anomalies, and the 

defect location in the image could be emphasized. In the future, 

we would like to generate data that more closely resembles the 

rust of real pressure pipes and conduct experiments to improve 

the accuracy of the anomaly detection and the anomaly 

location estimation. 
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