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Abstract— In this paper, we propose a scene-independent 
robust unsupervised video anomaly detection method based on 
future frame prediction as a breakthrough and better video 
anomaly detection technique. Most conventional methods 
evaluate and develop a static camera and dashcam approach as 
independent tasks, and no method has been proposed that is 
independent of the capture conditions. The proposed method 
introduces a frame-wide future prediction–based spatio-
temporal adversarial networks that can handle arbitrary series 
lengths to cope with various scenes. The noise in the prediction 
error caused by constant background changes is improved by 
weighting the regions of interest for the discriminator of the 
generative adversarial networks (GANs). This framework can be 
applied to all cases regardless of the scene environment. 
Experiments on public datasets of general traffic scenes and 
crowded scenes confirm the superiority of the proposed method 
over current state-of-the-art methods. 

I. INTRODUCTION 

Research on advanced driver assistance systems for the 
establishment of automated driving technology is being 
actively conducted. Automated driving is an important 
technology that provides a safe and comfortable driving 
experience. On the other hand, the development of technology 
to avoid accidents associated with independent driving is 
inevitable in establishing a safe system. Since there are an 
infinite number of scenarios of abnormalities that can occur in 
everyday life, including traffic scenes, a framework that can 
detect all kinds of abnormalities should ideally be established. 
In recent years, several in-vehicle accident warning systems 
have been tried to reduce the risk, but their detection has been 
limited to certain modes [1]. On the other hand, a few data-
driven methods that use dashcam video images, which can be 
installed inexpensively, have also appeared [1–3]. Chan et al. 
[2] proposed a Dynamic-Spatial-Attention Recurrent Neural 
Network (DSA-RNN) as a supervised approach for dashcam 
video images. However, the supervised approach requires 
annotations on a huge number of datasets, and the patterns of 
anomalies that can be identified are limited. Yao et al. [3] 
proposed an unsupervised approach that is independent of 
specific anomaly modes and trained the model using only 
normal data that can be collected in large amounts. Specifically, 
anomaly detection is performed based on whether there is a 
discrepancy between the prediction results of a model trained 
only on normal data and the actual observed data. In all fields 
of anomaly detection, the above approach is often taken due to 
the difficulty of collecting supervised data. The advantage of 
this approach is that the pattern of anomalies that can be 
detected does not depend on the supervised data, as compared 
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Fig. 1 An overview of our method. The model predicts the future image one 
frame ahead of the input video and the optical flow. Anomalies are detected 
by calculating the difference between the prediction and the ground truth. 
Since the model is trained only with normal data, the error for abnormal 
regions is large. 

to supervised methods. Unfortunately, their method [3] is not 
sufficiently practical in terms of accuracy.  

On the other hand, there has been a lot of research on video 
anomaly detection in surveillance camera images in daily life 
[4–18]. These studies all pertain to crowded scenes captured by 
surveillance cameras for statics. An unsupervised approach 
using the reconstruction (prediction) error of the video image 
has been successful here, and Luo et al. [8] proposed a 
reconstruction-based method using an Autoencoder-like 
spatio-temporal network for video images. Ravanbakhsh et al. 
[13] proposed a method that compresses the spatio-temporal 
information between neighboring image frames in a video into 
an optical flow and attributes it to image-based anomaly 
detection. Liu et al. [16] provided a new baseline for predicting 
future image frames for video inputs. However, these methods 
implicitly assume that the data are captured by a static camera, 
which is highly unsuitable for dashcam videos where the entire 
background of the image changes constantly over time. In 
particular, the constant background change has a negative noise 
effect on the prediction error of the entire image, which hinders 
the detection of abnormal scenes.  

In summary, most conventional methods evaluate and 
develop a static camera and dashcam approach as independent 
tasks, and no robust video anomaly detection method has been 
proposed that is independent of the capture conditions. In this 
paper, we propose a scene-independent robust unsupervised 
video anomaly detection method based on future frame 
prediction as a breakthrough and better video anomaly 
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detection technique. The proposed method predicts the future 
of the entire frame image and detects anomalies based on errors. 
A spatio-temporal adversarial networks is introduced to model 
the complex spatio-temporal information from a moving 
camera. The noise in the prediction error caused by constant 
background changes is improved by weighting the regions of 
interest for the discriminator of the generative adversarial 
networks (GANs) [19]. This framework can be applied to all 
cases regardless of the scene environment. The contributions 
of this paper are as follows. 

 We propose an unsupervised video anomaly detection 
method that is robust to various video scenes. 

 We propose a framework for focusing on anomalous 
regions of an image by efficiently utilizing the 
discriminator of GANs. 

We evaluated the proposed method on a large traffic scene 
dataset [1] and a crowded scene dataset [7,18] of dashcams 
installed on trucks. As a result, we confirmed the superiority of 
the proposed method as compared to current state-of-the-art 
methods. 

In the following, we first present related studies. Next, we 
present the framework of the proposed method. In addition, we 
show the validation experiments. Finally, we give the 
conclusion and future prospects. A schematic diagram of the 
proposed method is shown in Fig. 1. 

II. RELATED WORK 

Video anomaly detection has attracted a great deal of 
attention in the fields of computer vision and robotics [20]. 
Prior research has been developed independently on static 
surveillance video for crowded scenes and dashcam-based 
methods for traffic scenes. 

A. Video Anomaly Detection in Static Cameras 

In recent years, most of static cameras train the entire frame 
image using deep learning models and use the reconstruction 
and prediction errors for unsupervised anomaly detection. The 
approaches are mainly classified into two categories: (1) STN-
based methods [8–12] and (2) appearance and motion methods 
[13–17]. 

STN-based methods [8–12]. Spatio-temporal networks 
(STNs) have an encoder–decoder type of structure for 
reconstructing video images. STNs are trained to minimize the 
reconstruction errors between input and output using only 
normal data. Therefore, in the inference phase, the 
reconstruction error for normal data input is small, but for 
abnormal data input, the error is large because the model does 
not fit the normal parameters acquired during training. Luo et 
al. [8] proposed a method using temporally coherent stacked 
Recurrent Neural Network (sRNN). In recent years, GANs [19] 
in which the generator and discriminator learn adversarially 
from each other to generate high-quality images have been 
proposed, and they have been used in anomaly detection. Lee 
et al. [10] proposed spatio-temporal adversarial networks 
(STAN), an extension of STNs for adversarial models. 

Appearance and motion method [13–17]. In contrast to 
STNs, methods that compress the spatio-temporal information 
of video images into an optical flow and attribute it to image-

based anomaly detection settings have been particularly 
successful. In this paper, these are called appearance and 
motion methods. Ravanbakhsh et al. [13] uses Pix2Pix [21], an 
extension of GANs, to bi-directionally model the relationship 
between optical flow and frame images and detect anomalies 
based on prediction errors. Liu et al. [16] applied Pix2Pix to 
frame prediction, where the generator is applied as image 
converter to predict the future frame for the input video image. 
Nguyen et al. [17] also learned the transformation between 
frame images and optical flow but introduced the inception 
module [22] to help the convolutional layer learn more useful 
features. 

B.  Traffic Accident Detection in Dashcams 

A few studies exist regarding traffic accident detection 
using dashcam data. Chan et al. [2] proposed a supervised 
approach using the Dynamic-Spatial-Attention Recurrent 
Neural Network (DSA-RNN) for the entire frame image, the 
appearance features of the objects obtained using the detector, 
and the dynamic features of the frame. However, the 
supervised approach has a problem, in that the number of 
anomaly modes that can be detected is limited. Yao et al. [3] 
proposed an unsupervised approach that uses only a large 
amount of normal data for training. They also argued that it is 
not necessary to accurately predict all of the information in a 
frame, so their approach predicts the trajectory of a specific 
observed object and detects anomalies based on the errors. 
However, limiting objects by detector may lead to a decrease 
in detection accuracy for unexpected anomaly scenarios, and 
their method does not provide practical accuracy in evaluation 
using datasets. Haresh et al. [1] compared and validated 
reconstruction-based and one-class classification–based 
methods and reported the effectiveness and shortcomings of 
the reconstruction-based method. The important point of their 
method is that it takes into account the relative positions of 
objects using graph convolutional networks (GCNs) [23]. 
Unfortunately, the practicality of their method has not been 
sufficiently confirmed in the validation. 

III. PROPOSED METHOD 

The goal of this paper is to develop a robust video anomaly 
detection method that is independent of the scene. First, we 
organize the issues of conventional methods by task. 

Static camera method [4–18]. The static camera method 
implicitly assumes that the background of the video scene is 
stationary and simple. This assumption reduces the robustness 
of the method. When applying previous work to dashcam 
videos in Naïve, the constant changes and complexity of the 
entire frame may amplify the noise in the prediction error. In 
addition, the state-of-the-art method [17] uses only the optical 
flow between neighboring frames as spatio-temporal 
information, which is difficult to model because it cannot take 
into account the temporal information of the medium and long 
terms. In fact, the evaluation of the state-of-the-art method [16] 
for dashcam videos is not good [1]. In addition, most of the 
objects that are subject to anomaly detection in static datasets 
are simple objects with large visual deviations from normal. 
However, in view of real-world applications in society, it is 
necessary to achieve results not only for simple scenes but also 
for complex and difficult data with dynamic backgrounds.  
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Dashcam method [1–3]. In the dashcam method, an 
approach [3] is proposed to predict the trajectory of a particular 
object using an object detector. However, since there are 
innumerable anomalous scenarios, such limitation of 
observation targets may miss the anomalies to be identified. On 
the other hand, video reconstruction-based methods [1] have 
also been proposed, but the framework for incorporating 
object-based positioning has not been sufficiently successful 
and is not applicable to various video scenes. 

Proposed method. We propose a scene-independent 
robust unsupervised video anomaly detection method based on 
future frame prediction. The proposed method introduces a 
frame-wide future prediction–based spatio-temporal 
adversarial networks that can handle arbitrary series lengths to 
cope with various scenes. We believe that the small amount of 
temporal information in the previous state-of-the-art work [17] 
is the reason for the lack of robustness, so we introduce a 
flexible design for temporal information. We also propose to 
weight the regions of interest of the network discriminator. 
This is because the discriminator is a model that discriminates 
between “true” or “false” in GANs and is expected to focus on 
anomalous regions. Since this framework can focus on 
anomalous regions regardless of the video characteristics, it is 
expected to reduce the noise in the prediction error caused by 
motion and background complexity. Therefore, this strategy 
can overcome the drawbacks of approaches that model the 
entire frame image. Note that since the proposed method is 
trained unsupervised on all normal data only, future frames in 
normal events can be accurately predicted, and inaccurate 
prediction implies an anomaly.                 

 

Fig. 2 Overview of our model. The upper figure shows the generator, and the 
lower figure shows the U-Net discriminator. 

 

A.  Our Model 

The details of the model are shown in Fig. 2. Our model 
consists of a deep learning model with convolutional layers and 

four components: the Encoder, Decoder O, Decoder F, and the 
Discriminator. Encoder and Decoder O are defined as 
Generator O (𝐺ை ). Encoder and Decoder F are defined as 
Generator F (𝐺ி). 𝐺ை and 𝐺ி are trained only on normal video 
scenes to help detect objects that deviate from normal. 

Generator O ( 𝐺ை ).  𝐺ை  is an STNs consisting of the 
Encoder and Decoder O. The Encoder extracts spatio-temporal 
features from the input video image using convolutional layers 
and Convolutional-LSTM [24]. Decoder O uses the features 
extracted by the encoder to predict the future optical flow of 
one frame of the video image using a deconvolution layer. 
Since 𝐺ை  can be regarded as a kind of image-transformation 
task, it has a skip structure similar to that of Pix2Pix to share 
multi-level features between the encoder and decoder. We use 
optical flow for anomaly detection because we believe that the 
spatial information of the flow is useful and, intuitively, the 
prediction error of the flow forms a “blob” of anomalous 
regions. To the best of our knowledge, this is the first 
application of STNs to the task of transforming optical flows 
in video anomaly detection. 

 Generator F ( 𝐺ி ).  𝐺ி  is an STNs consisting of the 
Encoder and Decoder F, which predicts the image of one frame 
in the future. We can choose to use U-Net for 𝐺𝐹 instead of 
RNN and other spatio-temporal modules, as in Liu et al. [16]. 
However, we are concerned about the possibility of 
propagating anomalous information in the input due to the skip 
structure of U-Net [25]. We also believe that incorporating a 
module designed to handle spatio-temporal information will 
contribute to better modeling of video images. Therefore, we 
refer to the STNs model adopted by Lee et al. [10] and extend 
it to a predictive model. Both 𝐺ை and 𝐺ி incorporate Conv-
LSTM in their encoder to help model spatio-temporal 
information. We introduce the frame prediction model because 
we believe that since anomaly detection is the identification of 
unexpected events, it is natural to predict future video frames 
from past video frames and to compare the predicted values 
with the ground truths for anomaly detection [16]. 

Discriminator. We use U-Net as the discriminator to 
identify at the pixel level whether the image is a “true” image 
sampled from the dataset or a “false” frame image predicted by 
the generator. Note that the Discriminator only identifies the 
prediction result and ground truth of the frame image. For the 
bottleneck of U-Net, the Discriminator is connected to all of 
the coupling layers and identifies true or false at the frame level. 
The introduction of the U-Net Discriminator was inspired by 
the success of the U-Net GAN proposed by Schonfeld et al. 
[26]. The major advantages of the U-Net Discriminator are the 
introduction of consistency regularization (discussed below) 
and the improvement of the prediction quality of the model in 
the framework of pixel-level truth discrimination. The choice 
of a better GANs model contributes to better modeling of 
complex and difficult datasets such as those of dashcams and 
other traffic scenes. In addition, since the Discriminator is 
trained in the framework of conditional generative adversarial 
networks (cGAN), following Pix2Pix, it can theoretically 
avoid mode collapse, which is a problem for GANs [17].  

B. Training Our Model 

Our spatio-temporal adversarial networks is optimized by 
alternately minimizing the following two losses: 𝐿ீ  and 𝐿஽. 
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𝐿ீ ൌ 𝜆௙𝐿௙௥௔௠௘ ൅ 𝜆௢𝐿௢௣௧ ൅ 𝐿஽೐೙೎
ீ ൅ 𝐿஽೏೐೎

ீ         ሺ1ሻ 

𝐿஽ ൌ 𝐿஽೐೙೎ ൅ 𝐿஽೏೐೎
൅ 𝜆௖𝐿௖௢௡௦௜௦௧                     ሺ2ሻ 

Here,𝐺  represents the Generator, and 𝐷௘௡௖ and 𝐷ௗ௘௖  represent 
the Encoder and Decoder modules of the Discriminator, 
respectively. 𝐿௙௥௔௠௘ and 𝐿௢௣௧are the prediction loss of the frame 
image and the optical flow between the ground truth and the 
prediction result, respectively. 𝜆௙  and 𝜆௢ are the weighting 
constants for the prediction loss. 𝜆௖ is the weighting constant 
for the consistency regularization. Each term of 𝐿ீ is as 
follows: 

𝐿௙௥௔௠௘ ൌ ‖𝝃௧ାଵ െ 𝐺ிሺ𝒙௧ሻ‖ଵ                      ሺ3ሻ 

𝐿௢௣௧ ൌ ‖𝒐௧ାଵ െ 𝐺ைሺ𝒙௧ሻ‖ଵ                      ሺ4ሻ 

𝐿஽೐೙೎
ீ ൌ െ𝔼𝝃~𝒑𝝃

ൣ𝑙𝑜𝑔൫1 െ 𝐷௘௡௖ሺሾ𝝃௧ାଵ, 𝒐௧ାଵሿሻ൯൧                         

െ𝔼𝒙~𝒑𝒙ሾ𝑙𝑜𝑔ሺ𝐷௘௡௖ሺሾ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሿሻሻሿ  ሺ5ሻ 

𝐿஽೏೐೎
ீ  ൌ െ𝔼𝝃~𝒑𝝃

෍ 𝑙𝑜𝑔 ሾ 1 െ 𝐷ௗ௘௖ሺሾ𝝃௧, 𝒐௧ାଵሿሻሿ௜,௝

௜,௝

ሿ                   

            െ𝔼𝒙~𝒑𝒙 ෍ 𝑙𝑜𝑔
௜,௝

ሾ𝐷ௗ௘௖ሺሾ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሿሻሿ௜.௝ሿ ሺ6ሻ 

The input 𝒙௧ consists of partial time series 
𝝃௧ି்ିଵ, 𝝃௧ି்ିଶ, … , 𝝃௧with fixed length T at some time t. 𝝃 is the 
image of each frame. 𝒐௧ାଵ  is the optical flow at time t+1. 
ሾ𝐷ௗ௘௖ሺ𝝃௧ାଵ, 𝒐௧ାଵሻሿ௜.௝ and ሾ𝐷ௗ௘௖ሺ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሻሿ௜.௝ represent the 
output result of the Discriminator at pixel ሺ𝑖, 𝑗ሻ . 
ሾ𝝃௧ାଵ, 𝒐௧ାଵሿ means the combination of 𝝃௧ାଵ  and 𝑶௧ାଵ  in the 
channel direction. We adopt the L1 norm for the loss 𝐿௙௥௔௠௘ 
and 𝐿௢௣௧ to approximate the prediction and ground truth of the 
frame image and optical flow. In addition, each term in 𝐿஽ is as 
follows: 

𝐿஽೐೙೎ ൌ െ𝔼𝝃~𝒑𝝃
ሾ 𝑙𝑜𝑔 ሺ𝐷௘௡௖ሺሾ𝝃௧, 𝒐௧ାଵሿሻሻሿ                                    

െ𝔼𝒙~௣𝒙
ሾ𝑙𝑜𝑔ሺ1 െ 𝐷௘௡௖ሺሾ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሿሻሿ ሺ7ሻ 

𝐿஽೏೐೎
ൌ െ𝔼𝝃~𝒑𝝃

ሾ෍ 𝑙𝑜𝑔
௜,௝

ሾ𝐷ௗ௘௖ሺሾ𝝃𝒕, 𝒐௧ାଵሿሻሿ௜.௝ሿ                            

െ𝔼𝒙~𝒑𝒙ሾ෍ 𝑙𝑜𝑔
௜,௝

ሾ1 െ 𝐷ௗ௘௖ሺሾ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሿሻሿ௜,௝ሿ ሺ8ሻ 

𝐿௖௢௡௦௜௦௧ ൌ ||𝐷ௗ௘௖൫𝑚𝑖𝑥ሺሾ𝝃௧ାଵ, 𝒐௧ାଵሿ, 𝐺ிሺ𝒙௧ሻ, 𝑀ሻ൯                    

െ𝑚𝑖𝑥൫𝐷ௗ௘௖ሺሾ𝝃௧ାଵ, 𝒐௧ାଵሿሻ, 𝐷ௗ௘௖൫𝐺ிሺ𝒙௧ሻ൯, 𝑀൯||ଶ, ሺ9ሻ 

where 𝐿௖௢௡௦௜௦௧ denotes the Cutmix [27]-based consistency 
regularization introduced in [26]. This regularization is based 
on the idea that the output from a well-trained discriminator 
should be equal across image classes and domain 
transformations, and its introduction has been shown to greatly 

improve the quality of generation. The mix can be calculated 
by Equation (10). 

𝑚𝑖𝑥ሺሾ𝝃௧ାଵ, 𝒐௧ାଵሿ, ሾ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሿ, 𝑀ሻ ൌ 𝑀⦿ሾ𝝃௧ାଵ, 𝒐௧ାଵሿ         

൅ሺ𝟏 െ 𝑀ሻ⦿ሾ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሿ,    ሺ10ሻ 

where 𝑀 ∈ ሼ0,1ሽௐൈு is a binary mask indicating whether the 
pixel ሺ𝑖, 𝑗ሻ is a true image (1) or (0), 1 is a binary mask filled 
with 1, and ⦿  is an element-wise multiplication. Note that 
AdaBelief [28] is used as the optimization method for learning, 
and FReLU [29] is used as the activation function for the 
Generator and Discriminator layers. We also introduce spectral 
normalization [30] in each layer of the Generator and 
Discriminator to ensure stable learning. The ground truth of the 
optical flow is estimated by FlowNet2 [31], following the 
procedure used by Nguyen et al. [17]. 

C. Anomaly Detection 

A model that has been trained by following the steps in the 
previous subsection with only normal events can accurately 
predict normal events. Therefore, the difference between 
predicted frames 𝐺ிሺ𝒙௧ሻ and 𝐺ைሺ𝒙௧ሻ and their ground truths 
𝝃௧ାଵand 𝑶௧ାଵcan be used for anomaly detection. However, in 
Naïve, using the difference of the entire frame can cause a lot 
of noise in traffic scenes with dynamic backgrounds, as 
described above. Therefore, we focus on the Discriminator, 
which has been ignored in previous studies [13,15–17], and 
propose to utilize it efficiently. This is because the 
Discriminator is a model that discriminates between “true” 
and “false” images, and it is expected to focus on anomalous 
regions as “false” during inference. Specifically, the middle 
layer feature 𝐹ேሺሾ𝝃௧ାଵ, 𝒐௧ାଵሿሻ of the Nth layer of the 
Discriminator for input ሾ𝝃௧ାଵ, 𝒐௧ାଵ], which consists of “true” 
images and uses the difference between the feature 
𝐹ேሺሾ𝐺ிሺ𝒙௧ሻ, 𝐺𝒐ሺ𝒐௧ାଵሻሿሻ for the input ሾ𝐺ிሺ𝒙௧ሻ, 𝐺𝒐ሺ𝒐௧ାଵሻሿ, which 
consists of “false” images. Our framework incorporates a 
flexible design that allows us to arbitrarily choose which 
middle layer to use and to fuse multi-level features. The fusion 
of middle layer features enables anomaly detection by 
focusing on anomalous regions in any scene, including those 
from dashcam videos and static camera videos. The anomaly 
degree 𝑎ሺ𝒙௧ሻ  for input 𝒙௧ to the model at each frame  𝑡  is 
defined as in Equation (11): 

𝑎ሺ𝒙௧ሻ ൌ |||𝝃௧ାଵ െ 𝐺ிሺ𝒙௧ሻ|⦿|𝒐௧ାଵ  െ 𝐺ைሺ𝒙௧ሻ| 

⦿𝐷ௗ௘௖ሺሾ𝝃௧ାଵ, 𝒐௧ାଵሿሻ𝒎𝒂𝒑||ଵ    ሺ11ሻ 

𝒎𝒂𝒑ሺ𝑁, … , 𝐾, 𝐿ሻ ൌ |𝐹ேሺሾ𝝃௧ାଵ, 𝒐௧ାଵሿሻ       

െ𝐹ேሺሾ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሿሻ|⦿ ∙∙∙ ⦿|𝐹ெሺሾ𝝃𝒕ାଵ, 𝒐௧ାଵሿሻ 

െ𝐹୑ሺሾ𝐺ிሺ𝒙௧ሻ, 𝒐௧ାଵሿሻ⦿𝐹௅ሺሾ𝝃௧ାଵ, 𝒐௧ାଵሿሻ|,    ሺ12ሻ 

where the input 𝒙௧ consists of partial time series 
𝝃௧ି்ିଵ, … , 𝝃௧with fixed length 𝑇 at a certain time 𝑡, where 𝝃 
and 𝒐  are the image and optical flow of each frame, 
respectively. 𝒎𝒂𝒑 is the difference between the middle layer 
features 𝐹ே, . . , 𝐹௄  of any 𝑁, … , 𝐾 layer of the U-Net 
Discriminator and resized to the size of the input. Note that L 
means the output of the last layer of the Discriminator; its size 
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is equal to the difference between images. Therefore, no 
resizing is performed. The final score, 𝑆ሺ𝒙௧ሻ,  used in the 
anomaly calculation is obtained by normalizing using 
Equation (13), following the example of Nguyen et al. [17]: 

𝑆ሺ𝒙௧ሻ ൌ
𝑎ሺ𝒙௧ሻ

𝑚𝑎𝑥ሺ𝑎ሺ𝒙1ሻ, 𝑎ሺ𝒙2ሻ, … , 𝑎ሺ𝒙𝑚ሻሻ 
,              ሺ13ሻ 

where m is the total number of test data. This is used for 
anomaly detection. 

IV. EXPERIMENTS 

We used a dataset of crowded scenes captured by a static 
camera and a traffic scene captured by a dashcam with a 
complex dynamic background for evaluation. For evaluating 
congested scenes, we used UCSDped2 [7], which is a common 
public dataset for video anomaly detection, and Avenue [18]. 
An example dataset is shown in Fig. 3. UCSDped2 consists of 
16 clips of training data and 12 clips of test data. As shown on 
the left side of Fig. 3, the normal data are from walking at a 
normal speed. On the other hand, the anomaly data include 
bicycle riding and car intrusion. Avenue consists of 16 clips of 
training data and 21 clips of test data. As shown in the middle 
of Fig. 7, the normal data include walking at a normal speed. 
On the other hand, anomalous data include deviations from the 
norm, such as running or throwing a package. Avenue has 
some issues, such as blurring, and outliers occur during the 
shooting. 

To evaluate the traffic scenes, we use RetroTrucks, a large 
public dataset proposed by Haresh et al. [1], which consists of 
136,687 training frames and 36,663 test frames; this is shown 
on the right side of Fig. 7. The training data contain normal 
driving scenes, while the test data contain various driving 
scenes such as collisions and near misses. The training data are 
used to evaluate the performance of the system. Note that the 
training data for all datasets used in the evaluation consist only 
of normal data. 

Fig. 3 Examples of datasets. The upper row shows an example of normal, and 
the lower row shows an example of abnormal datasets. The red rectangle in the 
bottom row is the area of abnormal events. 

A. Evaluation Metrics 

For these datasets, we performed a quantitative evaluation 
of the area under the receiver operating characteristic curve 
(AUROC) model for the frame-level, following the procedure 
of many previous studies. Since the evaluation is done by 
AUROC, we do not discuss the anomaly threshold. 

B. Implementation Details 

The hyperparameters used in the experiments are shown 
below. Following the state-of-the-art method [17], the learning 
rates of the Generator and Discriminator were set to 2e-4 and 
2e-5[17], respectively, the batch size was set to 1 and the time 
step T was set to 4 (UCSD and Avenue) and 16 (RetroTrucks). 
All frame images were resized to 256×256. The prediction loss 
weights 𝜆௙and 𝜆௢ were set to 100 and 200, respectively, and the 
consistency regularization weight 𝜆௖ was set to 10 [26]. We 
used NVIDIA GeForce TITAN GPUs for the computation and 
PyTorch, a deep learning library, for the implementation. 

C. Baselines 

To quantitatively confirm the effectiveness of the proposed 
method, we compare it with recent deep learning–based 
methods [1,8,13,16,17], which are evaluated using static 
camera data, and the method of Haresh [1], which is evaluated 
using dashcam data. The methods that are closest to ours are 
those used by Liu et al. [16] and Nguyen et al. [17]. For details 
of the methods, please refer to Section II. 

D. Results of UCSD and Avenue 

Qualitative evaluation. Figure 4 shows the input/output of 
the model, the difference images, the middle layer features, 
and the anomaly map fused with them. Looking at the UCSD 
example (upper), we see that the model is unable to accurately 
predict the ground truth of the anomalous object, “car.” 
Looking at the difference between the ground truth and the 
prediction, we can see that the values around the anomalous 
object are larger. The noise can be caused by small noises in 
the dataset or limitations in the prediction quality of the model; 
this noise is more pronounced for data with complex 
backgrounds, such as that of RetroTrucks, described below. 
To address this issue, our proposed framework for fusing 
𝒎𝒂𝒑 helps to reduce the noise in Naïve difference images and 
obtain anomaly maps that focus on anomalous locations. 

The Avenue example in Fig. 4 (below) shows the poor 
prediction accuracy of the model’s optical flow. In particular, 
the difference values are large over a wide area other than the 
red rectangle anomaly area, forming a “blob” noise. This may 
be due to the fact that the UCSD data contain pedestrians 
moving at almost a constant speed, while the Avenue data 
contain more complex and difficult movements, such as 
people standing still for a certain period of time. This result 
suggests the problem of treating the optical flow as temporal 
information content. However, the fusion of the middle layer 
features of the proposed method does not significantly affect 
the performance of the final anomaly map, since such noise 
can be removed in the final map. 

Quantitative evaluation. Table 1 shows the list of AUROC 
scores for UCSD, Avenue, and RetroTrucks. Quantitative 
evaluation using AUROC confirms the effectiveness of the 
proposed method. Our method significantly outperforms that 
of Nguyen et al. [17] and other state-of-the-art methods in 
terms of frame-level scores. Similarly, for the static camera 
dataset, we observed that the performance was improved by 
fusing the 𝒎𝒂𝒑. Note that the w/o 𝒎𝒂𝒑 data in the table was 
computed using the difference in Naïve frame images.  
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TABLE 1 AUROC results for each dataset as compared with those of 
previous studies 

Method 
AUROC↑ 

UCSDped2 Avenue RetroTrucks 

Luo et al. [8] 0.922 0.817 N/A 

Ravanbakhsh et al. [13] 0.935 N/A N/A 

Liu et al. [16] 0.951 0.851 0.606 

Nguyen et al. [17] 0.962 0.872 N/A 

Haresh et al. [1] 0.700 N/A 0.715 

Ours w/o map 

Ours w/ map(1) 

Ours w/ map(1,L) 

Ours w/ map(3) 

0.665 

0.965 

0.957 

0.958 

0.741 

0.882 

0.891 

0.901 

0.618 

0.637 

0.661 

0.646 

 

E. RetroTrucks Results 

Qualitative evaluation. In the example of RetroTrucks, 
shown in Fig. 5, a rear-ending car is observed as an anomalous 
object. As we pointed out in Section III, noise other than the 
car exists in the background regions in the difference image, 
but it can be removed by 𝒎𝒂𝒑 fusion. The framework of the 
proposed method was found to be effective for dashcam 
videos. However, the prediction of the frame images in the 
figure shows that the proposed method predicts anomalous 
objects well. This is not an expected result in an unsupervised 
anomaly detection framework. One possible reason is that the 
model has acquired high expressive power for complex events 
through training with a huge dataset. 

Quantitative evaluation. From Table 1, we confirmed the 
effectiveness of the proposed method for RetroTrucks by 
quantitative evaluation using AUROC. Our method 
outperforms the state-of-the-art method in terms of frame-
level scores. In particular, we have quantitatively confirmed 
the performance improvement by integrating the middle layer 
feature map of the U-Net Discriminator. However, it was 
lower than the score of Haresh et al. [1]. This can be attributed 
to the fact that the generalization performance of the model of 
the proposed method was high as mentioned above, and the 
gain of the anomaly score of the anomalous data was not 
sufficient. Note that the results of Liu et al. [16] were 
referenced from Haresh et al. [1]. 

F. Impact of  𝒎𝒂𝒑 

In UCSD, our method only improved by 0.003 over the 
state-of-the-art method [17] in AUROC evaluation. In 
addition, 𝒎𝒂𝒑 can achieve a high gain of about 0.1~0.3 for 
Naïve differences no matter which layer is selected, but 
depending on the selection, the results are worse than those of 
Nguyen et al. [17]. This suggests that the proposed method 

does not provide a large gain on relatively simple datasets with 
little noise and variation. On the other hand, Avenue improves 
the score of Nguyen et al. [17] by 0.029. In terms of the choice 
of a 𝒎𝒂𝒑 layer, we obtain a better score when we fuse a more 
abstract layer (the third layer). This may be due to the fact that 
Avenue is littered with “blob” noise from optical flow 
prediction errors, so the deeper and more abstract layers, or 
“false” semantic high-level features, were more effective. In 
other words, the “false” images in the discriminator are 
semantically close to the anomaly. An example of a middle 
layer feature is shown in Fig. 6. This result suggests that the 
proposed method is effective in denoising complex data.  

Fig. 4 Results of UCSD (upper) and Avenue (lower). The first column is the 
Frame image, which consists of the ground truth, the prediction result, and 
their difference image. The second column is the optical flow ground truth, 
prediction result, and their difference image. The third column shows the 
differences of the middle layer features of the second and third layers. The 
area in the red rectangle shows the final anomaly map obtained by fusing 
𝒎𝒂𝒑. 
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 Fig. 5 RetroTrucks Results  

 

Fig. 6 Visualization of middle layer features in each layer. As the layers get 
deeper, the regions of interest that are “false” are extracted at a higher level. 
 

V. CONCLUSION 

In this paper, we proposed a scene-independent robust 
unsupervised video anomaly detection method based on future 
frame prediction. The main challenges are dealing with traffic 
scenes with a constantly changing background and complex 
data. The novelty of our method is the efficient use of 
generative adversarial network discriminators and the 
introduction of a framework to focus on anomalous regions, 
which improves the challenges. Experiments on public 
datasets of general traffic scenes and crowded scenes confirm 
the superiority of the proposed method over current state-of-
the-art methods. 
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