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Abstract— This paper aims at constructing a light-weight 

object detector that inputs a depth and a color image from a 

stereo camera. Specifically, by extending the network 

architecture of YOLOv3 to 3D in the middle, it is possible to 

output in the depth direction. In addition, Intersection over 

Union (IoU) in 3D space is introduced to confirm the accuracy 

of region extraction results. In the field of deep learning, object 

detectors that use distance information as input are actively 

studied for utilizing automated driving. However, the 

conventional detector has a large network structure, and the 

real-time property is impaired. The effectiveness of the detector 

constructed as described above is verified using datasets. The 

experiment verified that the proposed model is able to output 3D 

bounding boxes and detect people whose body is partly hidden. 

Further, the processing speed of the model reached 44.35 fps. 
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I. INTRODUCTION (HEADING 1)

Detecting or recognizing objects and counting the number 
of objects is a hot topic and in demand in the field of security 
and marketing recently. However, some of the problems faced 
are human error from carelessness or labor costs if hiring 
people. For solving these problems, it is necessary to enhance 
the camera system that realizes automated object detection. 

Due to the breakthrough progress of deep learning in 
recent years, object detectors have very high accuracy. In 
particular, three types of network structures have achieved 
important results. The first is Region-based CNN (R-CNN) 
[1] type represented by Fast/Faster/Mask [2, 3, 4] R-CNN.
Among them, Mask R-CNN realizes instance segmentation by
putting Fully Convolutional Network (FCN) [5] in the
network. However, this type has a convolutional neural
network for each object. For this reason, the network structure
and the calculation cost are large. The second is Single Shot
MultiBox Detector (SSD) [6] type. Since SSD is faster than
R-CNN and reflects the feature extraction results for each
scale, it has the advantage of being robust even if multiple
objects exist in the scene. However, SSD has many arbitrary
parameters such as the selection of scale and size setting of the
basic rectangle. Finally, You Only Look Once (YOLO) [7] is
composed of one simple network, and YOLOv2 [8] achieved
higher accuracy and processing speed than SSD. However,
due to the limitations of the algorithm, it is difficult to detect
when the objects are adjacent if they are in proximity to the
same anchor point (object merging).

On the other hand, in the counting of people and automatic 
driving, it is necessary to detect the object considering the 
depth information of the object in order to cope with the 
occlusion between objects. However, these network 

architectures are huge, and not real-time. Moreover, these take 
only point clouds as input, and color information cannot be 
taken into account. There are also detectors that emphasize 
real-time characteristics, such as Complex-YOLO [9] and 
YOLO3D [10]. However, these use detection methods that use 
point clouds from a bird's-eye view. Thus, it is necessary to 
use another process such as associating with a subjective 
image and to use a sensor that can acquire a wide range of 
points such as Laser Imaging Detection and Ranging (LiDAR). 

 Therefore, the purpose of this study is to construct an 
object detector that takes depth information and color 
information as input and identifies the 3D position of the 
object. In addition, we aim to construct a faster system by 
reducing the weight of the network. This makes it possible to 
easily and quickly identify the 3D position using a stereo 
camera, which was conventionally done by expensive range 
finders such as LiDAR. In the proposed model, a 3D bounding 
box is an output based on the structure of YOLO. This can be 
expected to be robust even for scenes with occlusions that are 
difficult to separate by simply combining 2D based methods 
and depth images. In chapter 2, we describe the network 
architecture and the loss function, and in chapter 3, we explain 
the verification experiment using the datasets. 

II. EXPANDABLE YOLO

A. Network Architecture

The structure of the proposed network is shown in Fig. 1.
We named it “Expandable YOLO” (hereinafter, this is called 
“E-YOLO”). E-YOLO is conceptually simple: YOLOv3 [11] 
used a color image consisting of RGB channels as input; we 
add a new depth image channel to this and input it as a single 
image. From this, the network is able to extract features from 
color and depth images at the same time. In E-YOLO, the 
image with 4 channels made in this way is used as input. 

Figure 1. The structure of E-YOLO. 
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Figure 2. The parameters of E-YOLO. This figure shows the size of 
the tensors in each layer of the proposed model and the size of the filters in 
the convolutional layer. 

Darknet-53, which is used in YOLOv3, is adopted as the 
network structure for extracting features up to the middle stage. 
The reason is that in YOLOv3, the feature extraction for 
predicting the bounding box was successful, and compared 
with the case where it was performed by Residual Network 
(ResNet) [12], the score was high in accuracy and processing 
speed. Therefore, Darknet-53 is an efficient network structure 
when extracting features from 2D images. In E-YOLO, the 
depth information is included in the input, but since this is 
input as a depth image, we think that feature extraction can be 
performed as in the case of a color image. 

Next, we explain the part of the network structure that 
outputs 3D bounding boxes from the features using Darknet-
53. In this part, two outputs are obtained at different scales as 
shown in Fig. 2. These two layers are connected using 
upsampling, and convolution with 1×1 kernel filter is 
performed. After that, it is divided into 26 channels in the 
channel direction. This makes the tensor 3D square. We 
inspired in this part by unified detection, a concept common 
to YOLO. Unified detection is a concept that allows 
classification and region identification to be output at the same 
time by storing the bounding box coordinates and 
classification results for each channel. Based on this concept, 
if the type of output value could be controlled for each channel, 
the same could be done for each channel range. Here, Feature 
Pyramid Network (FPN) [13] is adopted in YOLOv3. This is 
a type of model structure that is used to make it easier to detect 
the object of different scales. However, the proposed model 
handles only the scale of the middle part to reduce the 
calculation cost. 

With this network architecture, E-YOLO outputs a 3D 
bounding box from the color image and the depth image. All 
convolutional layers use 3×3 or 1×1 kernel filter as shown in 
Fig. 2. In addition, the size of each channel of the input image 
is 416×416 and the output size is 26×26×26 because the shape 
is transposed from 2D to 3D. Therefore, E-YOLO can detect 
the scene in Fig. 3. The number of input channels is 4; R, G, 
B of the color image and depth. On the other hand, the number 
of output channels is 10. Of these channels, the first 8 channels 
are for outputting 3D bounding boxes, which are confidence 
value, unreliable value, bounding box’s anchor point x, y, and 
z, the size of bounding box width, height, and depth. And the 
others are for recognizing the classes (person or object). We 
set the number of channels for classification to the same value 
of YOLOv3’s one. In preliminary experiments, we estimated 

that the best performances were obtained by setting these 
kernel sizes. 

B. Implementation Details 

 

Figure 3. The model output details. 

We set hyper-parameters of Darknet-53 following existing 
YOLOv3 work. The other parameters were set as shown in 
Fig. 2. But to reduce the calculation cost, the number of 
bounding boxes B in each grid is set to 1 

The training method is described below. Compared to 
YOLOv3, the proposed model also output in the depth 
direction. Therefore, we use the loss function of the YOLO3D 
including the square error for depth information for training. 
The loss function is as follows: 

 

Almost all values in equation (1) have the same meanings 
as YOLO3D’s ones. The value of G = (Height/26) × 
(Width/26) × (Depth/26) is the number of cells in the grid. In 
addition, λ, which indicates the usage of the error that is 
arbitrarily set, is set to 1 for the error of the center coordinate 
and size of the bounding box, and to 10 for the error when no 
object exists. The variable t is each value that composes the 
bounding box (x, y, z of the anchor point, and the width and 
height), and c represents the confidence that the bounding box 
exists at the position. The symbol p is defined as a variable 
indicating the probability of belonging to a class. The 
identifier l indicates whether or not the bounding box included 
in the supervised data exists in the cell. If the bounding box 
exists, errors with respect to the bounding box and 
classification are calculated, and if not, the reliability value 
portion of the object is calculated. 

The selection of the optimal bounding box candidates is 
described as follows. A typical method is a Non-Maximum 
Suppression (NMS). This is a method of eliminating the 
bounding box estimated for the same object based on the score 
representing the degree of overlap of the region called 
Intersection over Union (IoU). Here, conventional object 
detectors that handle 3D information such as YOLO3D 
calculate IoU for 2D from the two directions of the sensor 
front and vertical directions, and select the bounding box by 
NMS. However, with this method, IoU is calculated twice for 



the same 3D bounding box, which is inefficient when 
performing parallel calculations on the GPU. Therefore, in the 
proposed model, 3D IoU representing the degree of volume 
overlap as shown in Fig. 4 is defined, and NMS is executed 
based on this. As a result, the IoU calculation is performed 
only once on the GPU, and an improvement in processing 
speed can be expected. As for the threshold of IoU in NMS, 
0.5 was used in YOLO, R-CNN, and SSD. But it is better to 
use 0.35 in the case of volume ratio. 

III. EXPERIMENTS 

In order to confirm the effectiveness of the proposed 
model, the accuracy of the model was verified using multiple 
datasets. In addition, the processing time was measured for 
each part of the implemented system in order to verify the real-
time property. 

A. Training with Original Dataset 

We trained the model using the dataset we created, 
measured the time required for learning, and evaluated the 
model accuracy using the IoU score. We acquired data using 
RealSense D435 [14] in room 2720 on the Korakuen Campus 
of Chuo University. As shown in Fig 5, the data was taken 
indoors as people were walking. The label was created 
automatically by Mask R-CNN, and manually labeled those 
with a lower confidence value. Labeling of the depth value 
was performed using clustering for point clouds generated 
from RGB-D. The depth was normalized to a range of 10 
meters. We trained the model using the 1240 scene data 
obtained in this way. This data was divided into 1140 pieces 
of training data and 100 pieces of validation data. we set the 
learning rate to 0.001 and selected Adaptive moment 
estimation (Adam) [15] as the optimization method. The 
machine spec at the time of training was GPU: NVIDIA RTX 
2080 and CPU: Intel Core i7 8700K. The training was done 
end-to-end including Darknet. 

The transition of the loss indicating the learning progress 
when learning 100 epochs is as shown in Fig. 6. The vertical 
axis represents the loss, the horizontal axis represents the 
number of epochs, and the loss value represents the average 
loss in one epoch. The minimum loss value for training data 
was 2337.63, and the minimum loss value for validation data 
was 7180.24 (Table I). 

Although the minimum loss value looks large, from the 
loss transition, the loss with respect to the training data is less 
than 1/5000 of the initial loss. Looking at the transition of loss 
for validation data, the proposed model is robust even for 
unlearned data. In addition, we believe that errors can be 
further reduced by changing the feature extractor from 
Darknet to other networks. It is because Darknet is optimized 
for YOLOv3 architecture, not for 3D convolutional networks. 

So it is needed to optimize the parameters of network with any 
automatic machine learning method [16]. 

B. Verification of Detection Accuracy 

We verified the proposed model of detection accuracy. Fig. 
7 and 8 show the detection results of the trained models of 
YOLOv3 and E-YOLO. The detection results using the 
proposed model were rendered using the Point Cloud Library 
(PCL) [17]. In these figures, the red rectangle represents the 
ground truth. The bounding box color of the detection result is 
shown in purple in Fig. 7 and yellow in Fig. 8. Comparing 
these results, it can be seen that the proposed model can detect 
two-dimensional objects in the same way as YOLOv3, and 
can also estimate the depth direction at the same time. In 
addition, while the original YOLO did not detect the central 
person wearing black clothes, our proposed model could 
detect this. However, the accuracy of the length in the depth 
direction for bounding boxes was still insufficient compared 
with the ground truth. 

 

Figure 5. Environment when collecting data. 

 

TABLE I.  THE MINIMUM LOSS VALUE 

Data Type Minimum Loss Value 

Training 2337.63 

Validation 7180.24 

 

 

 

Figure 4. The 3D IoU for NMS 

 

Figure 6. The transition of the loss. 

 



In order to quantitatively evaluate the accuracy of the 
estimated bounding box, we used the IoU score. We also 
evaluated it with the 3D IoU described in Fig. 4 because the 
proposed model outputs a 3D bounding box. 

The results of the IoU score with the training data are 
shown in Table II. According to the previous studies, the 
YOLOv3 IoU score is about 0.7 to 0.8 for every class. Thus, 
the accuracy of the bounding box in the 2D dimension of the 
proposed model has decreased slightly. This is because the 
proposed model did not adopt the FPN structure used in 
YOLOv3. By using the FPN structure, the robustness for 
objects of different sizes is improved, but the processing speed 
is reduced. Therefore, it is expected to improve the accuracy 
while maintaining the real-time property by partially 
incorporating it into the network in consideration of the 
processing speed. We also compared 2D IoU and 3D IoU 
scores. At first glance, the 3D IoU score appears to be low; 
however, 2D IoU corresponds to 3D IoU2/3 from the 
relationship between the volume ratio and the area ratio. From 
this result, it is considered that the proposed model can extract 
2D and 3D features to the same extent. Therefore, in order to 
improve accuracy, improvements such as multi-layering are 
required in the part of the network architecture that performs 
both 2D convolution and 3D convolution. 

C. Verification of Processing Speed 

We verified the processing speed of the proposed model. 
The machine spec used for verification was GTX 1080 Ti for 
GPU and Core i7 4790 for CPU. The model was implemented 
with PyTorch [18]. The results are shown in Table III. As a 
result, although the processing speed of the proposed model 
was lower than that of YOLOv3, it was able to operate at a 
very high speed as a network to obtain the 3D output. This is 

because the number of 3D convolution layers is reduced by 
using 2D convolution layers for feature extracting. However, 
since it is necessary to increase the number of layers in order 
to improve the accuracy of object detection, by improving the 
efficiency of the RGB-D feature extraction method, the 
accuracy is improved while maintaining the processing speed. 

The reason why the processing speed of the proposed 
method was not as fast as YOLOv3 is that the computational 
cost of 3D convolution is high and the output size is large due 
to the large dimension of the output. A possible solution to this 
problem is to introduce a location-correlation-conscious 
network architecture as an alternative to 3D convolution. In 
addition, since Darknet53 is a YOLOv3 optimized model, the 
introduction of a backbone network such as ResNet can be 
expected to improve processing speed while maintaining 
accuracy. 

IV. CONCLUSION 

In this study, we constructed a lightweight network that 

can output a 3D bounding box from RGB-D images. By using 

the depth image instead of the point cloud to acquire the 

features in the depth direction by 2D convolution, it is 

possible to realize a lighter network than 3D processing. In 

our future work, we aim to extend the proposed network to 

perform instance segmentation. 
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