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Abstract: In order to operate service robots in a human-robot coexisting environment, smooth motion 

control that does not give discomfort to the human is important. In this paper, we propose a smooth motion 

control method that considers human’s behavior. The proposed motion control method is based on the 

DWA (Dynamic Window Approach) which is a widely used obstacle avoidance scheme using the 

optimization of several objective functions. Considering human’s behavior, an additional objective 

function for DWA is defined to realize the smooth motion control of the mobile robot. 
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1. INTRODUCTION 

Recently, autonomous mobile robots are expected to be used 

in service for daily human life (i.e., human-robot coexistence 

environments, such as offices and living spaces). Considerable 

studies to solve obstacle avoidance problem have been 

intensively conducted (Zhu et al. (1991), Sakahara et al. (2007), 

Missura et al. (2019)). However, in the human-robot 

coexistence environment, robots need to avoid humans by 

considering that a human is a special obstacle, which changes 

their movement according to the surrounding environment. 

Therefore, one of the functions required for these robots is 

smooth motion control that takes human’s behavior into 

consideration. Tamura et al. proposed a method to estimate the 

intention of a person trying to avoid a collision with a robot 

and generate an appropriate avoidance trajectory accordingly 

by using SFM (Social Force Model) (Helbing et al. (1995)) as 

a human’s motion model (Tamura et al. (2010)). However, the 

avoidance behavior is limited to only simple movements such 

as left and right movement, and more general trajectory 

generation considering the structural information of the 

surrounding environment has not been realized.  

Based on the above problems, in this paper, avoidance 

behavior considering human’s motion model is applied to 

Dynamic Window Approach (DWA) (Fox et al. (1997)), 

which is one of the popular motion control and obstacle 

avoidance methods for mobile robots. In this way, we propose 

an autonomous navigation scheme that can perform smooth 

motion control without giving people discomfort even in the 

human-robot coexisting environment. 

The remainder of this paper is organized as follows. Section 2 

and Section 3 briefly summarize the DWA to control the 

motion of the robot and the SFM to predict the motion of the 

human, respectively. Section 4 presents the proposed DWA 

expansion to realize smooth motion control of mobile robots. 

Then, in Section 5, the effectiveness of the proposed smooth 

motion controller is evaluated by the experimental results. 

Finally, Section 6 concludes this paper and discusses future 

work.  

2. DWA 

DWA (Fox et al. (1997)) is one of motion control methods 

widely used as obstacle avoidance method for mobile robots. 

In this paper, differential wheeled mobile robot with 

nonholonomic characteristics is assumed and the output 

velocity at time t is defined as Vt = [vleft  vright]T where vleft is the 

left wheel speed and vright is the right wheel speed. In DWA, an 

evaluation function is calculated for each candidate Vt, and 

optimal Vt is output by maximizing the value of the evaluation 

function. By defining a DW (Dynamic Window) that can take 

into consideration the robot’s kinematic constraints when 

performing the search for optimal Vt, the amount of 

computational cost is reduced because the search area in the 

vleft-vright plane can be narrowed.  

2.1  Evaluation Function “Heading” 

In the evaluation function “Heading”, evaluation values are 

calculated taking into consideration the angle from the robot 

to the destination, and it makes it possible for the robot to turn 

smoothly toward the destination. In “Heading”, the evaluation 

value term gH(Vt) is defined as follows:  

𝑔H(𝑽𝑡) = 1 −
𝜃(𝑽𝑡)

𝜋
(1) 

where (Vt) is the angle from the robot to the destination when 

Vt is output.  

2.2  Evaluation Function “Clearance” 

In the evaluation function “Clearance”, evaluation values are 

calculated taking into consideration the position of the 



 

 

     

 

surrounding obstacles, and it makes it possible for the robot to 

generate a trajectory that can avoid the obstacles. In 

“Clearance”, the evaluation value term gC(Vt) is defined as 

follows:  

𝑔C(𝑽𝑡) =
𝑇collision(𝑽𝑡) − 𝑇stop(𝑽𝑡)

𝑇maxstop − 𝑇stop(𝑽𝑡)
(2) 

where Tstop(Vt) represents the fastest time required for the robot 

to stop from Vt. Tmaxstop represents the time required for the 

robot to stop from the maximum speed. Tcollision(Vt) is the time 

take to collide with the closest obstacle when the robot keeps 

navigating with Vt. 

2.3  Evaluation Function “Velocity” 

In the evaluation function “Velocity”, the evaluation value 

calculation taking into consideration the translational speed is 

performed, and it allows the robot to navigate at an optimal 

speed. In “Velocity”, the evaluation value term gV(Vt) is 

defined as follows:  

𝑔V(𝑽𝑡) =
𝑉max + |𝑣trans(𝑽𝑡)|

2𝑉max

(3) 

where Vmax is the maximum value of the wheel speed and 

vtrans(Vt) is the translational speed at Vt. 

2.4  Composition of Evaluation Functions 

By combining all the evaluation functions, we can obtain an 

evaluation function g(Vt) that reflects the features of each 

element. The integrated evaluation function g(Vt) is given:  

𝑔(𝑽𝑡) = 𝛼𝑔H(𝑽𝑡) + 𝛽𝑔C(𝑽𝑡) + 𝛾𝑔V(𝑽𝑡) (4) 

where , , and  are the weights for the composition of the 

“Heading”, “Clearance”, and “Velocity” evaluation functions, 

respectively. 

 3. SFM 

SFM (Helbing et al. (1995)) expresses the motion model of a 

walking person by virtual forces as shown in Fig.1. While 

walking to the destination, humans avoid surrounding 

obstacles and people. In SFM, these factors are reflected by 

attractive forces and repulsive forces. The virtual force FA(t) 

that a human A receives at time t is given:  

𝑭𝐴(𝑡) = 𝑭𝐴
0(𝑡) + ∑ 𝑭𝐴𝐵(𝑡)

𝐵

+ ∑ 𝑭𝐴𝑊(𝑡)

𝑊

(5) 

where FA
0(t) is the attractive force received from the direction 

of the destination. FAB (t) and FAW(t) denote the repulsive force 

received from the human B and the obstacle W, respectively.  

SFM can predict the future trajectory of a person by using FA(t) 

represented in (5) as a prediction value of acceleration, and this 

term is reflected in the new evaluation function in DWA 

described in Section 4.  

 

3.1  Attractive Forces Received from The Destination 

The attractive force FA
0(t) is defined as follows: 

𝑭𝐴
0(𝑡) =

1

𝜏𝐴

(𝑣𝐴
0𝒆𝐴(𝑡) − 𝒗𝐴(𝑡)) (6) 

where  is the time required for acceleration by a person, vA
0 

is the speed of walking desired, eA(t) is the direction vector of 

the desired movement, and vA(t) is the actual velocity of the 

person. 

3.2  Repulsive Forces Received from Other People 

The repulsive force FAB(t) is defined as follows: 

𝑭𝐴𝐵(𝑡) = 𝑤(𝒆𝐴(𝑡), −𝒇𝐴𝐵)𝒇𝐴𝐵 (7) 

where w is a weight in consideration of the visibility 

information of A and reflects that the interest in objects 

receiving attractive forces or repulsive forces. Therefore, it can 

be increases or decreases depending on the situation of human 

vision. w is described by  

𝑤 = 𝑤(𝒆, 𝒇) = {
1    if(𝒆 ∙ 𝒇 ≥ ‖𝒇‖ cos 𝜙)

𝑐                        else
(8) 

where  [rad] is a constant value which represents the half size 

of a person’s field of vision. e and f are a direction vector 

toward the person’s destination and a vector of a virtual force 

received, respectively. The function fAB is defined as follows: 

𝒇𝐴𝐵 = −∇𝒓𝐴𝐵
𝑉𝐴𝐵[𝑏(𝒓𝐴𝐵)] (9) 

where the repulsive potential VAB (b) is a function of b, which 

is a monotonically decreasing function. Here, rAB denotes the 

relative position of A to B. The contour line of b is an ellipse, 

whose major axis is the moving direction of the B as shown in 

Fig. 2. b can be described by  

𝑏 =
1

2
√(‖𝒓𝐴𝐵‖ + ‖𝒓𝐴𝐵 − 𝑣𝐵Δ𝑡𝒆𝐵‖)2 − (𝑣𝐵Δ𝑡)2 (10) 

3.3  Repulsive Forces Received from Obstacle 

The repulsive force FAW(t) is defined as follows: 

𝑭𝐴𝑊(𝒓𝐴𝑊) = −∇𝒓𝐴𝑊
𝑈𝒓𝐴𝑊

(‖𝒓𝐴𝑊‖) (11) 

where UrAW(||rAW||) is the potential for repulsive forces, which 

is a monotonically decreasing function. The vector rAW = rA - 

rWA represents the relative position of A to rWA. Here, rWA is a 

position within W closest to A.  

 

Fig. 1. Social force model acting on pedestrian A. 



 

 

     

 

 

Fig. 2. Repulsive forces received from B. 

4. DWA EXPANSION 

DWA combines the multiple evaluation functions to output the 

optimal velocity Vt that satisfies all factors. Based on this 

structure, we define a new evaluation function that can take 

account of human dynamic information and synthesize it with 

the conventional evaluation function represented in (4). 

4.1  Additional Evaluation Function “Person” 

In this paper, a new evaluation function gP for extended DWA 

is called “Person”. In “Person”, calculation of an evaluation 

value is performed considering the future motion of the person 

obtained by SFM. This allows the robot to navigate smoothly 

taking the behavior of the pedestrian into consideration. In 

“Person”, the evaluation value term gP is defined as follows: 

𝑔𝑃(𝑽𝑡) = 𝑚𝑖𝑛 (
∑ 𝑑pre,𝑖

𝑁
𝑖=1

𝑁𝐷th

, 1) (12) 

where N is the number of frames at prediction, Dth is an 

experimentally obtained constant value. dpre,i is the distance 

between the robot and a person after i frames which is 

calculated as shown in Fig. 3. Here, rA,i is the predicted 

position of the person after i frame under the assumption that 

the person moves according to SFM. Similarly, rrobot,i is the 

predicted position of the robot after i frame under the 

assumption that the robot moves while maintaining the 

velocity Vt of the current frame. Here, the value of dpre,i is 

calculated from the Euclidean distance between rA,i, and rrobot,i. 

4.2  Composition of Additional Evaluation Function 

We combine “Person” with as the new evaluation function into 

DWA in order to enable the robot to navigate in consideration 

of the future behavior of the human. The extended evaluation 

function gnew(Vt) is given:  

𝑔new(𝑽𝑡) = 𝛼𝑔𝐻(𝑽𝑡) + 𝛽𝑔𝐶(𝑽𝑡) + 𝛾𝑔𝐶(𝑽𝑡) + 𝛿𝑔𝑃(𝑽𝑡) (4) 

where  is the weight for the composition of the evaluation 

function “Person”. As a result, Vt that can be navigate more 

smoothly in the human-robot coexistence environment is 

output.  

 

 

Fig. 3. Conceptual diagram of objective function “Person”. 

 

 

Fig. 4. Trajectories of robot and human (top view). 

 

Fig. 5. Trajectories of robot and human (bird eye view). 

5. SIMULATION EXPERIMENT 

5.1  Simulation Conditions 

In order to verify that the proposed method can perform 

smooth motion control in a human-robot coexisting 

environment, simulation experiments were conducted under a 

situation where a human and a robot are passing each other. 

The simulation environment is assumed to be a corridor which 

consists of sufficiently wide two walls. Note that destinations 

of the robot and the human are set at the opposite side of the 

corridor respectively. Here, we qualitatively evaluated how 

much smooth avoidance was realized by comparing the 

trajectories produced by the extended DWA depending on 

different weights of “Person”  and the conventional DWA. 

5.2  Results 

Figures 4 and 5 show output trajectories of the robot produced 

by each of methods (i.e., conventional DWA and extended 



 

 

     

 

DWA) with the human’s trajectory generated by SFM. Figures 

6 and 7 respectively depict the distance between the robot and 

human, and translation velocity at each frame. Note that we 

assumed that each estimated path of the robot and human has 

no error in the simulation environment. We conducted 

comparative experiments using various weights of “Person” 

(i.e.,  = 0.0, 2.0, 4.0, 6.0). Note that if the weight is zero (i.e., 

 = 0.0), it is identical to the conventional DWA. Here, the 

robot’s trajectories depending on different weights  are 

represented by purple, black, red, green lines, respectively. 

The human’s trajectory is represented by a white line. 

In the case of the conventional DWA (i.e., = 0.0), the robot 

suddenly reduced the speed without changing the direction 

when it approached the human. This motion gives a sense of 

discomfort from a person’s point of view. On the other hand,  

 

the smoother motions of the robot were generated as the 

weight value  was increased. In case of the weight is 2.0, the 

generated robot’s motion was not much different from the 

conventional DWA. However, in case of the weight is 4.0 or 

more, the robot navigates smoothly without reducing the speed 

even if it approaches the human since the robot had changed 

the running direction based on predicted human’s behavior by 

SFM in advance. In case of the weight is larger than 4.0, the 

motion of robot was almost unchanged compared with the 

motion when the weight is set to 4.0. 

 

Fig. 6. Distance between human and robot. 

 

Fig. 7. Translational velocity of robot. 

6. CONCLUSION 

We realized smooth motion control in the human-robot 

coexisting environment by extending the DWA approach, 

which is one of the popular motion control methods for 

autonomous mobile robots. The validity of the proposed 

motion control method was investigated through experiments 

in a simulation environment. 

Finally, the future work related to this study is as follows. In 

this study, the smooth motion control was implemented under 

the assumption that the position of the human is completely 

detected by the sensor mounted on the robot. However, it is 

difficult to accurately detect the human every frame. Therefore, 

we will develop a more robust scheme that could manage such 

uncertainty of human detection. Moreover, we plan to operate 

the proposed motion control method in real environment. 
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