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ABSTRACT
This paper introduces a simultaneous estimation method of the extrinsic parameters of multiple fish-eye cameras using
simple calibration markers. Precise extrinsic parameters of cameras mounted on a car are important, for example, to
provide a seamless overhead view image to the driver. Calibration markers are set in the area that are observable from
adjacent two cameras. Extrinsic parameters of each camera are estimated individually and then combined and refined
using a geometric constraint. Cube markers are chosen as the calibration markers. The method is evaluated by simulation
and experiments using a real car. It is shown that extrinsic parameters are obtained by the proposed method and suggested
that the errors of intrinsic parameters affect the estimation of extrinsic parameters.
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1. INTRODUCTION
Recently, camera systems are widely used in cars to assist drivers. As an example, a system to generate an overhead view
image was proposed1 and is implemented to commercial cars. The system uses multiple fish-eye cameras and generates
an overhead image by combining images of the cameras. Therefore, it is important to calibrate multiple fish-eye cameras
correctly to generate a seamless overhead image with small errors. There are several parameters to calibrate, such as
intrinsic, extrinsic, and optical parameters. Several studies have discussed calibration of intrinsic parameters.2, 3 In this
paper, we focus on extrinsic parameters, i.e., camera position and orientation.

The most common method to calibrate a camera is the one proposed by Zhang.4 The method shows a planar calibration
pattern several times to a camera from different directions and estimates both intrinsic and extrinsic parameters. Zhang’s
method is widely used for calibration of normal cameras with perspective projection. However, the distortion of a fish-eye
camera is strong compared to a normal camera and Zhang’s method cannot be applied to a fish-eye camera. Scaramuzza
proposed a similar method that can be applied to a fish-eye camera.5 However, their method is for a single camera and thus
may cause large gaps at the overlapped regions of multiple images in the overhead image. Okutsu et al. proposed a method
to estimate intrinsic and extrinsic camera parameters of multiple fish-eye cameras.6 However, their method calibrates each
camera individually. It is required to calibrate multiple (fish-eye) cameras simultaneously.

In this paper, we introduce a method to obtain extrinsic parameters of multiple fish-eye cameras simultaneously using
simple calibration markers. We evaluate the method by simulation and experiments using a real car.

2. PROJECTION OF A FISH-EYE CAMERA
The projection model of a fish-eye camera is usually represented by using a radial relation. Suppose θ [rad] is the angle
between the direction to a target point and the optical axis of the camera lens, and ρ [pixel] is the length from the principal
point (the point corresponding to the optical axis) and the target point in the image. The typical projection models are
equidistance projection and orthogonal projection, that are represented respectively as follows.

ρ = δθ (1)
ρ = δ sin θ (2)
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δ = f/w

where f is the focal length [mm] and w is the pixel size of a image sensor [mm]. A real fish-eye camera does not follow
the ideal models such as (1) and (2). One of the models to represent a real fish-eye camera is a polynomial model6 that
represents the radial model as

ρ = k1θ + k3θ
3 + k5θ

5 + ... (3)

where k1, k3, k5 are coefficients. And another typical model is the one presented by Scaramuzza et al.5 The relation
between a three-dimensional (3D) point P = [X Y Z]T and image coordinate p = [u v]T and principal point (image
center) p0 = [u0 v0]

T is given as follows.

P =

 X
Y
Z

 ≈

 u−u0

v−v0
f(ρ)

 (4)

≈ means that they are equal as homogeneous coordinates. ρ =
√
(u − u0)2 + (v − v0)2 is the distance from the

principal point p0 = [u0 v0]
T to the image coordinate p = [u v]T . f(ρ) is a polynomial of ρ and represented as follows.

f(ρ) = a0 + a1ρ+ a2ρ
2 + a3ρ

3 + a4ρ
4 + ... (5)

In this paper, we adopt up to the 4th term and set the coefficients a0, a1, a2, a3, a4 as camera intrinsic parameters. With the
principal point p0 = [u0 v0]

T , the camera intrinsic parameters of each camera Ii becomes

Ii = [a0i a1i a2i a3i a4i u0i v0i]
T (6)

where i is the camera number.

3. ESTIMATOIN OF EXTRINSIC PARAMETERS OF MULTIPLE FISH-EYE CAMERAS
In this section, we introduce the method to estimate extrinsic parameters of multiple fish-eye cameras. We use a calibration
marker of a cubic shape. We assume that four fish-eye cameras with known intrinsic parameters are set on a car as shown
in Fig.1. Note that numbers other than four are possible and cameras are not necessarily on a car.

Markers with given dimensions are set as shown in Fig.1. Each marker is set in the area that are observable from
adjacent two cameras. That is, marker A is observed by cameras 3, 1, marker B is observed by cameras 1, 2, marker
C is observed by cameras 2, 4 and marker A is observed by cameras 4, 3. For this calibration setting, we solve the
Perspective n-Point (PnP ) problem and estimate the camera extrinsic parameters, that represent each camera’s position
and orientation in the world coordinate system. For each camera, we set the optical axis as the Y-axis as shown in Fig.2,
and set the pitch, roll, yaw angles in the world coordinate system as αcami, βcami, γcami respectively, and camera position
as [Xcami Ycami Zcami]

T . Then the extrinsic parameters Ei are defined as follows.

Ei = [Xcami Ycami Zcami αcami βcami γcami]
T (7)

3.1 Outline of parameter estimation
We estimate the extrinsic parameters by the following procedures.

1. Estimate two cameras’ position and orientation in the local coordinate system of each marker, so that the square sum
of errors between input points and reprojected points becomes minimum.

2. Set an arbitrary local coordinate system to a world coordinate system. Then transform local coordinates of markers
to world coordinates by using the estimated camera’s position and orientation for each marker.

3. Estimate each camera’s position and orientation in the world coordinate system, i.e., extrinsic parameters Ei by
applying the same procedure as 1., using the world coordinates of each marker.

The procedures 1(3) and 2 are described in 3.2 and 3.3 respectively.



Figure 1. Calibration environment

Figure 2. Camera coordinate system

3.2 Estimation of extrinsic parameters
We estimate extrinsic parameters of each camera by the following procedures. j represents the number of vertices that are
projected in a fish-eye image. In the procedure 3. of 3.1, the number is twice of the number of vertices of each marker,
because the estimation is carried out using two markers simultaneously.

1. Capture a fish-eye image that contains two marker images.

2. Obtain the coordinates of vertices of a marker mfj = [uj vj ]
T in the image coordinate system.

3. Reproject the 3D coordinates of vertices of a marker in the world or marker’s coordinate system to the image coor-
dinate system, and obtain the image coordinate mwj = [uwj vwj ]

T .

4. Estimate the extrinsic parameters Ei by minimizing the square sum of reprojection errors D between mfj and mwj .

The procedures are applied to each camera i (i = 1, 2, 3, 4) independently.

The reprojection error function D is obtained as follows. The reprojected point mwj is represented using the camera
intrinsic and extrinsic parameters Ii and Ei as follows (see Fig.3).

mwj =

[
uwj

vwj

]
=

ρ√
X2

cj + Y 2
cj

[
Xcj

Ycj

]
+

[
u0

v0

]
(8)

From (5), ρ is calculated by solving the 4th-degree equation

f(ρ) = a0 + a1ρ+ a2ρ
2 + a3ρ

3 + a4ρ
4. (9)

f(ρ) is given by f(ρ) =
Zcj√

X2
cj + Y 2

cj

ρ from (4). Xcj = [Xcj Ycj Zcj ]
T is the coordinates that the world coordinates

Xwj of measured point Pj are transformed in the camera coordinate system, and represented as

X̃cj = MX̃wj

M =

[
R t
0T 1

]
(10)

X̃ represents the homogeneous coordinates of X , i.e., X̃ = [XT 1]T . R is the 3× 3 rotation matrix with roll βcami, pitch
αcami, yaw γcami in this order, and t is a 3D translation vector. R and t are calculated from camera extrinsic parameters



Figure 3. Reprojection on fish-eye image

Ei. The point reprojected in the fish-eye camera coordinate system mwj can be expressed as the function of Ei and Xwj .
We estimate the extrinsic parameters Ei so that the square sum of the distance between the reprojected point mwj and the
projected point of the original measured point mfj becomes minimum. The sum D is given as

D =

N∑
j=1

∥mfj −mwj(Ei, Xwj)∥2 (11)

where N is the number of vertices of a marker projected in a fish-eye image. We use modified Powell’s method7 for the
minimization.

3.3 World coordinates of markers
We detail the procedure to obtain the marker’s 3D coordinates in the world coordinate system described in 3. of 3.1.
Assume k represents the marker’s label A,B,C,D. We set marker’s 3D coordinates in the local and world coordinate
systems as Xk = [Xk Yk Zk]

T and Xwk = [Xwk Ywk Zwk]
T respectively. From Fig.4, transform from local coordinate

system to world coordinate system is represented by using the camera’s position and orientation Rt(i,k) as

X̃wA = MAX̃A,MA = Rt−1
(3, D)Rt(3, A)

X̃wB = MBX̃B ,MB = MCRt−1
(2, C)Rt(2, B)

X̃wC = MCX̃C ,MC = Rt−1
(4, D)Rt(4, C)

X̃wD = X̃D

(12)

Rt(i,k) is given similarly to the homogeneous transform matrix M in (10). We set the origin of the world coordinate system
to the vertex 4 of marker 4 in Fig.4.

4. SIMULATION
We conducted some simulation to evaluate the accuracy of the proposed extrinsic parameter estimation. We used a cubic
object as a calibration marker.

4.1 Simulation condition
We explain conditions of simulation. Table 1 shows the extrinsic parameters of each camera Ei. The parameters are
the same as the ones in the experiments of the next section. As the projection model, we used (5). We estimated the
intrinsic parameters of Camera 1 for the experiments by the method by Okutsu.8 Table 2 shows the estimated intrinsic
parameters. In this simulation, we assumed that the intrinsic parameters have no errors because we focus on extrinsic
parameter estimation. The calibration marker is a cube with 1200mm length, that is almost the same as the one in the
experiments, and we used eight vertices as the feature points.



Figure 4. Conditions of extrinsic parameter estimation

Table 1. Camera extrinsic parameters Ei

Camera Xcam [mm] Ycam [mm ] Zcam [mm] αcam [deg] βcam [deg] γcam [deg]
1 3500 7250 650 -20 0 0
2 2500 5800 800 -20 0 -90
3 4500 5800 800 -20 0 90
4 3500 2500 670 -20 0 180

We assumed that the markers are set as in Fig.1 and produced simulation data. Fig.5 shows the produced fish-eye
images. Size of the simulation image is 1328× 1048 pixel.

Simulation was carried out as follows. The vertices of a marker in the produced fish-eye image are used as the feature
points, and Gaussian noises with σ = 0, 0.2, 0.6, 0.8, 1.0, 2.0, 3.0 pixel were added. Then extrinsic parameters of each
camera were estimated by the proposed method. The number of simulation was 100 for each σ, and the averages of
absolute errors of estimated parameters and their standard deviation were calculated.

4.2 Simulation results
Fig.6 shows the simulation results. Horizontal axis represents the σ [pixel] of the Gaussian noise added to the feature
points, and vertical axis represents the average absolute error of position [mm] and orientation [deg]. Error bars represent
the standard deviation.

The results show that the extrinsic parameters are estimated without errors if the feature points are given without errors,
and that both the position errors and orientation errors increase roughly proportional to the given error size. When σ is
1 pixel or less, position errors are less than 50 mm and orientation errors are less than 1 deg except Camera1’s roll angle
βcam1. Although the required accuracy depends on real applications, the errors for σ ≤ 1 seem to be reasonably small.
And extraction of feature points with the accuracy of 1 pixel is not very difficult in general.

5. EXPERIMENTS WITH A REAL CAR
We conducted experiments to estimate extrinsic parameters of four fish-eye cameras that were attached on a real car using
cube markers with the same dimensions in the simulation. In this experiments, we estimated the intrinsic parameters Ii of
the fish-eye cameras by using the method of Scaramuzza et al.5 that is implemented in Matlab. Table 3 shows the estimated

Table 2. Camera intrinsic parameters I1

k1 k3 k5
338.518 24.650 -1.364



(a) Camera 1 (b) Camera 2 (c) Camera 3 (d) Camera 4
Figure 5. Fish-eye images of cube markers

(a) Average error of position

(b) Average error of pose

Figure 6. Simulation results



Table 3. Camera intrinsic parameters Ii

Camera a0 a1 a2(×10−4) a3(×10−7) a4(×10−9) u0 v0
1 -391.58 0.00 9.57 -6.12 1.14 689.61 569.30
2 -392.53 0.00 9.59 -6.14 1.14 685.09 556.87
3 -392.47 0.00 9.82 -6.78 1.20 677.74 554.75
4 -392.23 0.00 9.50 -6.92 1.12 686.47 577.17

Figure 7. Cube marker

intrinsic parameters. The marker was constructed using pipes and joints. Fig.7 shows the marker in the fish-eye image.
Fig.8 shows the examples of images used in the experiments. From such images, we can extract vertices of markers by
transforming the marker region to remove local distortion and then extracting lines of pipes by applying Hough transform
to the marker image, and finally detecting the intersection points of the lines as the vertices (see Fig.9). However, we
detected the vertices manually with subpixel resolution in the experiments. The initial values of the extrinsic parameters
were set to zero. We set the origin of the world coordinate system to the Camera 1 position with height z=0. Table 4 shows
the ground truth of the extrinsic parameters.

Table 5 shows the estimation errors of extrinsic parameters. The orientation errors are rather small: less than 1.5 deg.
However, position errors are not small. By comparing with the simulation results, it is equivalent to the errors of feature
points of as large as 3 pixel or so. We think that the large errors are due to the errors of intrinsic parameters. It will be
required to improve the projection model of the fish-eye camera and develop a more precise calibration method of intrinsic
parameters.

6. CONCLUSIONS
We introduced a method to estimate extrinsic parameters of multiple fish-eye cameras simultaneously. A known calibration
marker is set in the area that are observable from adjacent two cameras and individually estimated extrinsic parameters are
combined and refined. Simulation and experiments using a real car were conducted using cube markers, and showed that

(a) Camera1 (b) Camera2 (c) Camera3 (d) Camera4
Figure 8. Samples of input images



Table 4. Ground truth of extrinsic parameters
Camera Xcam [mm] Ycam [mm] Zcam [mm] αcam [deg] βcam [deg] γcam [deg]

1 0.0 0.0 650.0 -19.1 1.1 -0.2
2 1060.0 -1355.0 800.0 -21.2 -90.0 -2.8
3 -1055.0 -1342.0 800.0 -19.8 90.2 -2.1
4 -510.0 -5060.0 650.0 -20.8 179.1 0.3

Table 5. Error of extrinsic parameters
Camera Xcam [mm] Ycam [mm] Zcam [mm] αcam [deg] βcam [deg] γcam [deg]

1 0.0 0.0 18.0 -0.1 1.3 -1.4
2 -121.0 -148.2 59.4 0.6 -0.1 1.1
3 82.1 -164.2 -22.1 -0.1 -0.5 -1.2
4 -30.0 -132.7 10.0 0.4 -0.3 0.7

extrinsic parameters are obtained by the proposed method and suggested that the errors of intrinsic parameters affect the
estimation of extrinsic parameters.

Improvement of the projection model of the fish-eye camera and construction of a more precise calibration method of
intrinsic parameters, and application to real problems will be our future works.
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(a) Line detection (|θ| > π/4) (b) Line detection (|θ| ≤ π/4) (c) Extraction of vertices
Figure 9. Extraction of vertices using Hough transform


