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Abstract—This paper proposes a simple method of estimating 

fisheye camera’s intrinsic parameters without calibration 

targets. This method takes advantage of the trajectories of 

feature points in the scene. The trajectories of feature points are 

obtained from a rotation movement of the camera around the 

vertical axis. The feature points are utilized for calibration, thus 

specific calibration targets are not required. The proposed 

method estimates intrinsic parameters of a real fisheye camera. 

The validity of the proposed method is verified by the 

perspective projection of a distorted image using estimated 

parameters. In addition, this paper compares the results of 

perspective projection using the proposed method and the 

conventional method. 

I. INTRODUCTION 

Fisheye cameras are widely used as sensors to acquire 

information from the external world. This camera has a wide 

angle of view (almost 180 [deg]) and can measure a wide 

range of information at once. Therefore, it is effective for 

building sensor systems, such as driver assistance systems 

and monitoring systems, that require a wide range of 

measurements at a low cost. However, images obtained from 

a fisheye camera have intractable distortions. Thus, intrinsic 

parameters must be estimated accurately to remove the 

distortion by perspective projection. Intrinsic parameters 

represent the individual differences of each lens. The 

accuracy of the estimation of this parameter affects the 

image-processing result.  

Many studies have estimated the intrinsic parameters of the 

fisheye camera [1]-[6]. However, these methods are often 

cumbersome, due to the requirement of a special target. In 

Scaramuzza's method [7], a checkerboard pattern is presented 

repeatedly to calibrate the fisheye camera. Kannala [8] 

estimated the intrinsic parameters of the fisheye camera to 

shoot only once for each piece of the calibration board. 

However, that is also cumbersome due to the size of 

calibration board (2×3[m2]). The quality of the calibration 

depends on the way or the number of times the target is 

shown. 

Therefore, this paper develops a marker-free calibration 

method. As seen in Figure 1, this method estimates the 

intrinsic parameters of a fisheye camera using trajectories of 

feature points obtained by rotating the camera; the camera is 
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rotated around the vertical axis through the optical center of 

the camera. Note that the trajectory used in this paper is 

defined as the coordinates of a feature point, excluding 

temporal information from the trajectory in the meaning that 

is usually used. A brief overview of the proposed method is 

given in [9]. In this paper, we present details of the method 

with two minor modifications: camera model and evaluation 

function. Furthermore, we performed experiments using 

actual equipment. 

The verification of the proposed method is shown by 

simulation, and an experiment was conducted using the actual 

equipment. In addition, this paper compares the estimation 

results with an existing approach. 

II. INTRINSIC PARAMETERS OF THE FISHEYE CAMERA 

A. Model of the fisheye 

This paper uses the generic omnidirectional camera model 

that was proposed by Scaramuzza [7].  Figure 2 shows an 

outline of the camera model. 

A 3D position, 𝑷 = [𝑋 𝑌 𝑍]𝑇, is represented by the 2D 

position 𝒑 = [𝑢 𝑣]𝑇 and the image center 𝒑𝟎 = [𝑢0 𝑣0]𝑇: 

𝑷 = [
𝑋
𝑌
𝑍

] ≈ [

𝑢 − 𝑢0

𝑣 − 𝑣0

−𝑓(𝜌)
] , 

 

(1) 

where the origin of the image coordinate system is in the 

upper left corner. The ≈ symbol represents equivalence up to 

scale. ρ represents the distance from the image center, 𝒑𝟎, to 

a 2D position  𝒑 = [𝑢 𝑣]𝑇: 

𝜌 = √(𝑢 − 𝑢0)2 + (𝑣 − 𝑣0)2 . (2) 

𝑓(𝜌), which is a polynomial of 𝜌, is expressed as follows: 

𝑓(𝜌) = 𝑎0 + 𝑎1𝜌 + 𝑎2𝜌2 + 𝑎3𝜌3 + 𝑎4𝜌4 + ⋯ . (3) 
In this paper, 𝑓(𝜌) is a fourth-order polynomial. Including 

the center of the image, intrinsic parameters to estimate are 

defined as follows: 

𝐈 = [𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 𝑢0    𝑣0 ]𝑇 . (4) 

 

Fig. 1. Estimation of intrinsic parameters [9] 
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Fig. 2. Camera model               Fig. 3. 3D coordinates 

  
(a)Camera 1                        (b)Camera 2 

Fig. 4. Shape differences between the two cameras 
 

B. Projection of the 3D point 

In this paper, the 3D point, 𝑷, is represented by azimuth 𝛼 

and elevation 𝛽 utilizing the rotation of the camera, as shown 

in Figure 3. 

𝒑 is projected from eq. (1) on the image as follows: 

𝒑 = [
𝑢
𝑣

] = [
−𝑡𝑎𝑛𝛼 ∙ 𝑓(𝜌) + 𝑢0

√𝑡𝑎𝑛2𝛼 + 1 ∙ 𝑡𝑎𝑛𝛽 ∙ 𝑓(𝜌) + 𝑣0

] , (5) 

where 𝜌 is the real solution of eq. (3). 𝑓(𝜌) is given from eq. 

(1) and Figure 3 as follows: 

 

III. THE ESTIMATION METHOD 

 This method assumes that the fisheye camera is installed 

so as to satisfy the following conditions. 

 The rotation axis of the camera passes through the 
optical center. 

 The optical axis and the rotation axis cross one another 
perpendicularly. 

Trajectories are captured by rotating the camera. These 

trajectories include information regarding the azimuth 𝛼 , 

elevation 𝛽, and intrinsic parameters of the camera. Figure 4 

shows the shapes of trajectories based on different intrinsic 

parameters in the simulation. Our idea is to estimate the 

intrinsic parameters based on the geometric shapes of the 

trajectories, which reflect the differences in the intrinsic 

parameters. 

In this method, the intrinsic parameters of the fisheye 

camera are estimated by minimizing the evaluation function. 

Arguments of the evaluation function are intrinsic parameters 

and the 3D coordinates of observation points. The flow of the 

estimation is shown as follows. 

 

A.  Definition of the evaluation function 

 First, the following constraint is obtained by erasing 𝛼 

from eq. (5): 

𝑣𝑟𝑖 − 𝑣0 − √(𝑢𝑓𝑖 − 𝑢0)
2

+ 𝑓2(𝜌) ∙ tan 𝛽 = 0, (7) 

where 𝑢𝑓𝑖  is obtained from observation point 𝒑𝒇𝒊 =

[𝑢𝑓𝑖 𝑣𝑓𝑖]𝑇 . Then we can calculate the re-projected point 

𝒑𝒓𝒊 = [𝑢𝑟𝑖 𝑣𝑟𝑖]𝑇, where 𝑢𝑟𝑖 = 𝑢𝑓𝑖 and 𝑣𝑟𝑖 is the solution of 

eq.(7). 

An evaluation function, 𝐸, is defined as the sum of the 

squares of the difference between observation point 𝒑𝒇𝒊 and 

re-projection point 𝒑𝒓𝒊 as follows: 

𝐸 = ∑(𝑣𝑓𝑖 − 𝑣𝑟𝑖)
2

,

𝑁

𝑖=1

 (8) 

where N is the number of observation points. Evaluation 

function 𝐸 is calculated by 𝛽 of the observation point, 𝐈 and 

 𝒑𝒇𝒊 . 

Intrinsic parameters, 𝐈, are estimated by the optimization 

technique. The elevation angle, 𝛽, of the feature point, as 

shown in the next section, is estimated by iterative 

calculation. In this paper, a modified Powell method [10] is 

used to optimize an evaluation function. 

B. Flow of the estimation 

Figure 5 shows the flow of the estimation of this paper. 

First, the intrinsic parameters are initialized. Appropriate 

initial values are given to 𝑎0~𝑎4 . u0  and 𝑣0  are calculated 

from the symmetry of each trajectory. Details about the 

initialization process are described in section III.C. 

First, the elevation angle of each point in one trajectory is 

solved from eq. (7) while fixing intrinsic parameters. An 

average of the elevation angles is then defined as  𝛽 of the 

trajectory. The intrinsic parameters are estimated so as to 

minimize the evaluation function using obtained 𝛽. Iterating 

successive flow, each intrinsic parameter and the elevation 

are updated. Note that the estimation of 𝑎0~𝑎4 is repeated 

while increasing the number of intrinsic parameters. We 

found that this heuristic approach improves the stability of the 

estimation process. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Flow of estimation   

  𝑓(𝜌) = −
𝑍

√𝑋2 + 𝑌2
𝜌 

= −
𝜌

√𝑡𝑎𝑛2𝛼 + (𝑡𝑎𝑛2𝛼 + 1) ∙ 𝑡𝑎𝑛2𝛽
 . 

(6) 
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Fig. 6. Calculation of 𝑣0 

 

 
Fig. 7. An example of an artificial feature points 

 

C. Initializing values 

 Initial values affect the accuracy of estimated results. 

𝑎0~𝑎4 are almost the same among fisheye cameras. Thus, we 

set their initial values empirically. The manual initial guess 

on intrinsic parameters can be very rough and thus is not hard.  

An initial value of  𝑢0 is determined by using a trajectory 

approximated by a quadratic curve. 𝑢0 is set as the average of 

u at every extremum of the quadratic curves. However, u at 

an extremum tends to deviate when the trajectory is nearly 

linear. Therefore, we may exclude trajectories from the 

initialization comparing v at the endpoints of each trajectory. 

𝑣0  is calculated from correspondence between the 

curvature and the vertex coordinate. The quadratic coefficient 

and v at the extremum of each trajectory are plotted on a 2D 

plane. Figure 6 shows an example of the plot. The horizontal 

axis represents v at extremum, and the vertical axis represents 

a quadratic coefficient. We use points positioned near the 

center of the fisheye image to apply linear approximation. 

Then 𝑣0  is determined from the approximated line by 

substituting 0 for the quadratic coefficient. 

 

IV. SIMULATION 

When the trajectories of feature points are captured using 
the actual camera, ideal trajectories cannot be obtained due to 
various factors, including errors in installing the camera or 
errors in feature point detection and tracking. In order to 
verify the accuracy of the proposed method and the influence 
of errors, the simulation is conducted using an artificial 
image. 

A. Setting of the environment 

 An artificial image was produced with the assumption 
that the optical axis of the camera is rotated horizontally 
around the optical center in parallel with the horizontal plane. 
To verify the influence of the measurement error of the 
feature point, normally distributed artificial noise was added 
to 𝑢𝑓𝑖  and 𝑣𝑓𝑖 , independently. The mean and standard 

deviations were 0.0 and 𝜎 = 0.0, 0.5, 1.0, 2.0, respectively. 
We performed 10 experiments in each setting. Figure 7 shows 
the example of an artificial image used in the experiment. 
There were 820 observation points in each image. Initial 
values of 𝑎0~𝑎4 are shown in Table I. To estimate the initial 
value 𝑣0 stably, four trajectories near the image center were 
used for estimation. 

B. Experiment results 

 The estimated value of each intrinsic parameter and the 

final evaluation function are shown in Table II. Figure 8 

shows the observation points and re-projected points at the 

end of the experiment. Only the upper right corner of the 

image is shown. Each blue dot represents an observation 

point. Each red rectangle represents a re-projection point. As 

in Table II, the differences of the image center between the 

average and the true value were within 1[pixel] in any 

experiment. Thus, convergence can be correctly confirmed 

stably even if the measurement error was large. However, the 

evaluation function was not 0 even if the standard deviation 

was 0.0[pixel]. The reason is considered to be that the 

evaluation function converges to a local optimum solution 

due to the calculation of the elevation angle.  

It is difficult to verify the accuracy of 𝑎0~𝑎4. Instead, we 

compared the trajectories of the re-projected points obtained 

with the following conditions: 

I. 𝑎0~𝑎4: estimated value 

𝑢0, 𝑣0: true value. 

II. 𝑎0~𝑎4: true value 

𝑢0, 𝑣0: true value. 

The trajectories were assessed by the average of the 

distance of each re-projected point pair. 

The results are shown in Figure 9. The horizontal axis 

represents 𝜎  of the noise. The vertical axis represents the 

average of the distance between re-projected points. Error 

bars represent the standard deviation. When 𝜎 was 1.0[pixel] 

and 2.0[pixel], a large re-projection error was observed once 

for 10 trials. These were excluded from the estimated results 

as the estimation failure. As in Figure 9, if the standard 

deviation was 0.0[pixel], the average of the re-projection 

error was 0.17[pixel] per point. As in Table II, the 

re-projection error was large despite the small value of the 

evaluation function. The reason is also considered to be that 

the evaluation function converges to a local optimum 

solution. If the standard deviation was 2.0[pixel], the average 

re-projection error was 1.38[pixel]. 

Further improvements of accuracy and stability would be 

required for practical use. The problem, which converges to a 

local optimum solution, must be solved. We are considering 

giving another constraint on the optimization process to avoid 

premature convergence. 



  

TABLE I INITIAL INTRINSIC PARAMETERS 

 

 

 

TABLE II AVERAGE VALUE AND STANDARD DEVIATION OF 10 EXPERIMENTS 

 

 

a) σ = 0.0[pixel](𝐸 = 32.70[pixel
2
])                  b) σ = 0.5[pixel] (𝐸 = 310.26[pixel

2
]) 

 

 

c) σ = 1.0[pixel](𝐸 = 1283.11[pixel
2
])               d) σ = 2.0[pixel] (𝐸 = 5463.65[pixel

2
]) 

Fig. 8. Examples of the observation points and re-projection points of each experiment 
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Fig. 9. Re-projection error 

𝑎0 𝑎1 𝑎2 𝑎3 𝑎4 

-100 0 0 0 0 

 True value 
σ = 0.0 σ = 0.5 σ = 1.0 σ = 2.0 

Ave. S.D Ave. S.D Ave. S.D Ave. S.D 

𝑎0 -391.58 -391.40 0.00 -386.58 3.41 -385.47 4.70 -385.83 5.65 

𝑎1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝑎2(× 10−4) 9.57 9.63 0.00 7.63 1.52 6.31 3.57 6.36 1.86 

𝑎3(× 10−7) -6.12 -6.60 0.00 0.09 5.31 5.38 13.7 5.58 5.56 

𝑎4(× 10−9) 1.14 1.21 0.00 0.65 0.49 0.05 1.46 0.40 0.52 

𝑢0[pixel] 689.61 689.60 0.00 689.05 0.46 689.38 0.43 689.23 1.29 

𝑣0[pixel] 569.30 570.01 0.00 569.95 0.35 569.73 0.55 570.00 1.21 

𝐸 [pixel
2
] --- 32.70 0.00 794.11 334.44 1508.91 444.50 8120.03 9629.94 



  

  

 

 

 

 

 

 

 

(a) Current camera model         (b) Previous camera model 

Fig. 10. Re-projection error for previous evaluation function 

C. Comparison with the previous camera model and 

evaluation function 

 To validate the differences of camera models, we 

applied the previous evaluation function [9] to the current 

camera model and the previous camera model, respectively. 

The results are shown in Figure 10. As in Figure 10, the 

previous camera model is more accurate than the current 

camera model. However, the previous camera model was 

unstable and the evaluation function did not converge in 

several times. In 10 trials for each standard deviation, 

failures of 3, 2 and 3 times occurred for 0.5[pixel], 1.0[pixel] 

and 2.0[pixel] respectively. On the other hand, in the current 

camera model, there was no case that estimation diverged. 

To summarize, the current model’s estimation is easier to 

estimate without requiring the azimuth angle and more stable 

compared with the previous model, but is less accurate. 

 By comparing Figure 9 and Figure 10(a), we can validate 

the differences of evaluation functions. We can say that the 

current evaluation function has higher accuracy. The stability 

is slightly inferior to the estimation using the previous 

evaluation function, since a few failures occurred for the 

current evaluation function as mentioned in section IV.B. 

V. INTRINSIC PARAMETER ESTIMATION EXPERIMENT 

WITH ACTUAL EQUIPMENT 

A. Generation of feature point trajectories 

 Figure 11 shows fisheye camera mounted on a tripod.  

CCD camera is Point Grey Research Dragonfly2. Its number 

of effective pixels is 1024768. The fisheye lens is SPACE 

TV 1634 M. Its focal length is 1.6[mm] and angle of view is 

180.0 [deg] × 114.1 [deg]. The experiment with actual 

equipment used images captured by rotating the mounted 

camera. The trajectory of each feature point was obtained by 

sequentially matching feature points of two successive 

images. In this paper, the AKAZE feature was used for 

detection and matching using feature points [11]. The 

AKAZE gives features with sub-pixel accuracy. Euclidian 

distances between feature points matched with two 

successive images, are calculated to judge whether matching 

is successful or not. If the distance between the feature points 

was larger than the threshold value in two successive images, 

these were regarded as incorrectly matched. 

The camera was rotated manually. Images were captured 

continuously at a regular interval. Figure 12 depicts 

transitions of the upper left corner of the whiteboard. It is 

desired to obtain dense feature points by tracking between 

successive images. To estimate intrinsic parameters stably 

and accurately, we chose full-trajectory manually. Figure 13 

shows the environment of the experiment. Trajectories, 

which were generated by tracking, are shown in Figure 14. 

 

 
Fig. 11. Fisheye camera mounted on a tripod 

 
Fig. 12. Capturing feature point trajectories 

 

 
  Fig. 13. Environment of the experiment  

 

 
 Fig. 14. Feature point trajectories 

TABLE III INTRINSIC PARAMETERS 

 

 

 

 

 

 

 

 

 

 

 
Proposed 

method 

Existing 

method 

𝑎0 -415.39 -403.67 

𝑎1 0.00 0.00 

𝑎2(× 10−4) 12.70 9.39 

𝑎3(× 10−7) -20.60 -4.42 

𝑎4(× 10−9) 3.51 1.29 

𝑢0[pixel] 548.95 546.94 

𝑣0[pixel] 386.86 386.58 
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B. Conditions of intrinsic parameter estimation 

Intrinsic parameters 𝑎0~𝑎4 to be initialized are the same 

values as those in Table I. Image center were calculated for 

the above method which was explained in section III.C. 

C. Results of the experiment 

 Figure 15 shows the re-projected points obtained by 

estimated intrinsic parameters. As in Figure 15, the 

minimization of the evaluation function was generally 

performed correctly. Also, Table III shows the results of 

estimated parameters and the existing method. 

It is impossible to know the true value of the intrinsic 

parameters. The evaluation was performed by the 

perspective projection of the fisheye image using the 

intrinsic parameters to be estimated. Also, the evaluation 

was compared with the existing methods. Using 

Scaramuzza’s method [6], the intrinsic parameters were 

calculated with the same fisheye camera. Twenty images that 

described the checkerboard pattern were used for estimation. 

An input image to be converted is shown in Figure 16. The 

perspective projection, using the results of each technique, is 

shown in Figure 17. As in Figure 17(a), we can see straight 

lines in the checkerboard pattern. As compared with Figure 

17(b), the distortion to the same extent has been removed as 

well. Therefore, the intrinsic parameters that were estimated 

can be considered to be approximately correct. We 

conducted quantitative evaluation by fitting a line to lattice 

points of a checkerboard pattern after transforming a fisheye 

image to a perspective image using the estimated intrinsic 

parameters. We extracted 10 vertical lines and 7 horizontal 

lines from Figure 17. Deviation of lattice points are 

evaluated from the obtained line. The average of standard 

deviation is 0.35[pixel] and 0.16[pixel] for the proposed 

method and the conventional method respectively. Although 

the deviation is sufficiently small even in the proposed 

method, the estimation accuracy is inferior to the traditional 

method. That is considered that there is a room for further 

improvement of accuracy.   

The reason distortion remains slightly is thought to be that 

a position of the installed camera violates presupposition. As 

for the discrepancy between the optical center and the 

rotation axis, it is possible to reduce the influence of the 

discrepancy by measuring distant feature points. Another 

cause of slight distortion is considered to be the uneven 

presence of trajectories. Trajectories tracked completely 

successfully were only used for estimation in this experiment. 

Accuracy will be further improved by using non-full 

trajectories; tracking may fails in the middle and then 

succeed again. 

          
Fig. 15. Re-projected points         Fig. 16. Input image 

   
(a)Proposed Method              (b) Conventional Method 

Fig. 17. Results of perspective projection 

VI. CONCLUSION 

This paper proposed a method of estimating fisheye 

camera’s intrinsic parameters without calibration targets. 

The experiment was conducted using the actual equipment. 

As a result, the minimization of the evaluation function was 

performed correctly, and it was possible to obtain an image 

that removed the distortion in the perspective projection with 

the estimated parameters. In future works, further accuracy 

and stability improvements will be achieved by solving the 

problems: the discrepancy between the optical center and the 

rotation axis, and the uneven presence of trajectories. 
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