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Abstract— Tracking a specific person in dynamic environ-
ments is a fundamental task of mobile service robots. Image
information is essential to identify a target person, however,
the information is not reliable under varying illumination. In
this paper, we propose a target-tracking system using a stereo
camera. Color and location information is used for the target’s
feature, which is useful to distinguish a target from the other
people. An evaluation value to identify a target is defined as
weighted sum of the color and location features. The weight
to the features is derived from a parameter of illumination
changes. The parameter of illumination changes provides the
system with capability of robust tracking even under varying
illumination. We confirmed robustness of the proposed system
through target-tracking experiments in outdoor environment
where the lighting condition changes extremely.

I. INTRODUCTION

Tracking a specific person is an essential ability for mobile
service robots. Robots that have this ability are expected to
be applied in offices, shopping centers [1], military areas [2],
golf courses [3] and so on. For the realization of tracking a
specific person in such dynamic environments, robots are
required to be aware of other people’s presence [4].

In order to perform the tasks in real-world unstructured
and dynamic environments, robots must have sufficient per-
ceptual capabilities. There are various sensors and sensor
modalities that give robots such capabilities [5], [6], [7].

One of the most common sensors used for human tracking
are cameras. Numerous methods for target tracking with
a mobile robot are based on color information. Some of
them use only color information in order to extract a target
region [8], [9], [10], [11]. Because color information is easily
affected by illumination changes, these methods might be
prone to causing mis-tracking. Hu et al. [12] illustrate a
target-tracking system in which, using both color and edge
information, the extraction of target region is achieved. The
approach proposed by Chakravarty et al. [13] is based on
extraction of the candidate regions of humans with a laser
range finder and comparison of the colors of the candidates
and the color of a target obtained from a panoramic camera.
These methods abate tracking errors but still are not robust
under changing illumination.

In [14], Takemura et al. accomplish the task in both
indoor and outdoor conditions by a combination of location
information from a laser range finder and color information
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from a stereo camera. Based on a combination of four types
of percepts (faces, torsos, sound sources, and legs), Fritsch
et al. [15] carry out tracking. The system has not been
applied in an outdoor environment because the environment
where each percept can be acquired is severely restricted.
The solution based on fusion of thermal and color cameras
is demonstrated by Cielniak et al. [16]. A thermal camera
is used for human detection and gives a contour model
of humans. Identification of each person is achieved by
the appearance model of the color distribution, which is
robust under changing lighting conditions. Furthermore, an
occlusion detection method is investigated. This system is
verified through a tracking experiment in cluttered indoor
environments. Thermal information is proper for recognizing
humans but may not allow robots to be used in outdoor
applications.

Contrary to the methods using color information that
are affected by illumination changes, Satake et al. [17]
adopt stereo-based human detection. A target is identified by
using the scale-invariant feature transform (SIFT) features of
the target’s clothing texture, which is resilient to changes
in lighting conditions. However, there is the problem of
computational costs. Petrovic et al. [18] also describe a stereo
vision-based method using only 3D information for human
detection and tracking. This method can be used in indoors
and outdoors, but in the experimental environments, there
are no people other than the target. It might be difficult to
apply the method in crowded environments, because it does
not use any feature specific to the target person.

In this paper, a target-tracking system for a mobile robot
is proposed, focusing on a problem of lighting conditions: in
order to be applied in dynamic real environments, the system
is required to be robust in spite of illumination changes. We
address these problems using a stereo camera, which can
offer robust measurement under changing illumination. A
stereo camera has the advantage of capturing both disparity
and color images simultaneously. The system is based on
both color and 3D information obtained from a stereo cam-
era. For adjusting to illumination changes, color and location
features are weighted and combined according to changes in
the lighting conditions.

The rest of the paper is organized as follows. Section II
explains the algorithm of our method. Section III presents
human-following experiments outdoors, to compare the pro-
posed system with other six methods and test the proposed
system by controlling a mobile robot on-line. Finally, con-
clusions and future works are shown in Section IV.
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Fig. 1. Flow chart of the proposed system

II. TARGET TRACKING ALGORITHM

A. System Overview

The proposed system utilizes a stereo camera attached to a
mobile robot. The algorithm for tracking a target is shown in
Fig. 1, which is an improved system based on our previous
one [19]. First, disparity and color images are acquired by
a stereo camera. A disparity image, which can be captured
with little influence from sunlight and illumination changes,
is used for human detection. When objects are identified as
humans, the color and location information of each person
is compared with that of a target person which is predeter-
mined. In order to make this system resilient to illumination
changes, the dissimilarity between detected humans and a
target human is given by fusion of both types of information
based on lighting conditions. A robot is controlled according
to the angle and the distance between the robot and the target.
Repeating these processes, continuous tracking is achieved.

B. Problems of the Previous Method

Our previous target-detection method uses only color
information, hue and saturation. Though hue and saturation
are relatively consistent under illumination changes, they
are affected by extreme and sudden changes in lighting
conditions and white balance, so it is difficult to distinguish a
target from the others. Fig. 2 shows one example of extreme
white-balance changes. After Fig. 2(a) had been captured,
the next frame was captured as shown in Fig. 2(b) with
the interval of about 0.05 s. The influence of white-balance
changes on color information can also be observed in Fig. 3.
In this graph, the blue line shows degrees of dissimilarity
between the color information of a calculated target on each
frame and that of a predetermined target, and the changes
in white balance are given as a red line. White balance has
two parameters, i.e., red and blue gains, which have integer
values from 0 to 1023, in a color image captured by a stereo
camera, Point Grey Research Bumblebee2. The change in

(a) Previous frame (b) Next frame

Fig. 2. Example of extreme white-balance changes

Fig. 3. The influence of white-balance changes on color information

(a) 227th (b) 474th (c) 512th

(d) 542nd (e) 735th (f) 1076th

(g) 1116th (h) 1149th (i) 1363rd

Fig. 4. Scenes with varying illumination

white balance is calculated by adding the amount of the
changes of the red and blue gains between the first and the
current frames. As the white-balance changes severely, the
dissimilarity tends to change as well.

Additionally, Fig. 4 shows the color images at each
number of the frames in Fig. 3. Based on these figures,
we assume that white-balance changes reflect the changes in
illumination, and by using the changes in white balance, the
resilience of the target-tracking system to lighting conditions
is improved. Therefore, in the proposed system, the changes
in white balance are adopted as the parameters that show
illumination changes.
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(a) Input image (b) Projected points

Fig. 5. Extraction of the candidates of human regions

(a) Example of extraction of the candidates (b) Binary image

Fig. 6. Process of human detection

C. Human Detection

In order to extract the object regions, the segmentation
method [20] is adopted. 3D information of each pixel of a
disparity image is projected onto an overlooked plane (see
Fig. 5). Fig. 5(b) is the plane of an input image as shown
in Fig. 5(a). The candidates of human regions are extracted
according to the density of the projected points. Then, using
a disparity image, the contours are depicted as shown in
Fig. 6(b), given by the disparity image of the candidate
region indicated by a red rectangle in Fig. 6(a). Thus, human
regions are detected based on the contours of the candidate
objects.

D. Target Detection

Once people have been detected, these regions are shown
as rectangles in the color image. The color information of
each region is extracted based on the binary image which is
given by the disparity image of the region. Hue and saturation
that are resilient to illumination changes are used as the
color information for the regions. The dissimilarity of color
information between detected humans and a target human is
calculated as follows:

Rcolor =

√
1−

∑
h

∑
s

√
Hinput(h, s)Htemplate(h, s),

(1)
where Hinput(h, s) and Htemplate(h, s) are a histogram
of the hue(h) and saturation(s) of the input and template
information, respectively. Additionally, at intervals of a few
frames, the color information of a target is compared with
preregistered one, and if the dissimilarity is under threshold,
the color information is updated.

In addition to color information, another component of the
proposed target-detection method is the location information

Fig. 7. Robot coordinate system

of detected humans and a target human. The location infor-
mation is given by X, Y values in the robot coordinate (see
Fig. 7). A Kalman filter is adopted to estimate the latest X,
Y values of a target’s position from the previous values. The
dissimilarity of the information between detected humans
and a target is computed as follows:

E = k
√
(Xs −Xe)2 + (Ys − Ye)2, (2)

where (Xs, Ys) is the latest position of the humans and
(Xe, Ye) is the estimated position of a target, and k is
adopted to transform E to a dimensionless number (usually
k = 1.0 m−1).

Rcolor and E are the evaluation values of color and
location information, respectively. If these values are under
the respective color and location thresholds, the total dis-
similarity between detected humans and a target human is
calculated. The total dissimilarity is defined as follows:

D =

{
(1− α)Rcolor + αE (α < αth)

E (otherwise)
, (3)

where α is the parameter that represents illumination changes
and has the relation α = p|W |, where W is the amount of
the white-balance change, and p is a constant. Value of p
is determined so as to hold the relation 0 ≤ α < 1. In (3),
αth denotes the threshold of illumination change. When the
illumination changes so much that the color information
changes significantly, α is equal to or more than αth. The
human region with the smallest D value is considered to be
the target region, if the D value is under a certain threshold.
The effect of the relationship between α and αth against D
is interpreted below.
(1) In the case of α < αth

The evaluation values of the human regions are weighted
according to the amount of white-balance change. This is
because the reliability of the color information is changed
by illumination variation. If the illumination varies little,
the color information is reliable. However, under varying
illumination, since the color information (particularly hue
value) changes easily, the reliability may significantly de-
crease. On the other hand, the location information is robust
to illumination changes. However, using it alone causes
target tracking to be difficult if the behavior of a target
does not accord with the prediction model. Consequently,
by using both color and location information, the resilience
in illumination changes can be improved compared with only
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Fig. 8. Influence of white-balance changes on the proposed system. The
blue line gives the D value, and the red line does the white-balance changes.
The green marks show the frames in which the color template is updated.

one information.
(2) In the case of α ≥ αth

The color information is supposed to be unreliable in this
case (see Fig. 3). Therefore, the dissimilarity is given by only
location information. In order to prevent the tracking from
depending solely on location information, the template color
information is updated to adjust to the lighting condition if D
is under the threshold. When the template color information
is updated, white balance is also registered. Then, |W | is
calculated as an absolute value of the difference between
white balance of a current frame and the registered one.

Profile of the D value of a target is depicted in Fig. 8.
It is obtained off-line in the same environments as shown
in Fig. 4. The green marks show the frames in which the
color template is updated. As shown in Fig. 8, the template
was updated 19 times. It can be seen that the value is given
independently of the changes in white balance.

III. EXPERIMENTAL RESULTS
A. Off-line Experiments under Illumination Environments

Firstly, we tested the performance of the system by
comparing with six settings given in Table I, in outdoor
environments where illumination varies. For all settings, each
threshold is given as same value. And, for the proposed
equation (I), the dissimilarity is calculated with k = 1.0
m−1, α = 0.25×|W |, and αth = 0.8. The environments are
classified into six illumination scenes, as shown in Table II
and Fig. 9. In this table, Condition means the lighting
condition (e.g. back means back lighting); Number of people
shows how many the other people were present at a frame on
average; Shadow indicates how often the shadow appeared.

The paths of a mobile robot (Segway Japan, Blackship)
with a stereo camera (Point Grey Research, Bumblebee2)
were controlled manually as following a target. Average
frame rate was 6.9 fps 1. The effectiveness of each method
is verified by two evaluation values, Precision and Recall,
which represent accuracy and completeness, respectively.

Precision =
A

A+ B
Recall =

A

A+C
(4)

1All captured color and disparity images were saved for off-line experi-
ments in this procedure. Note that the frame rate was lowered by limitation
of data transfer speed to HDD.

TABLE I
COMPARED SETTINGS OF FEATURES AND DISSIMILARITY EQUATIONS

Feature Dissimilarity equation

I Color and Location Information (3)

II Color Information (frequently updated) Rcolor

III Color Information (no updated) Rcolor

IV Location Information E

V Color and Location Information 0.9Rcolor + 0.1E

VI Color and Location Information 0.5Rcolor + 0.5E

VII Color and Location Information 0.1Rcolor + 0.9E

TABLE II
THE DETAILS OF OFF-LINE EXPERIMENTAL SCENES

Scene Condition Number of
people

Occlusion
the number of

occlusion/
the average frames/

the maximum frames

Shadow

1 back 1.8
5.0

no appearance5
11

2 direct 1.9
4

no appearance5
7

3 side 1.1
8

no appearance4
7

4 direct 1.1
15

no appearance7
14

5 side 1.2
7 continuous appearance

by buildings7
12

6 direct 1.3
14

no appearance7
17

(a) Scene 1 (b) Scene 2 (c) Scene 3

(d) Scene 4 (e) Scene 5 (f) Scene 6

Fig. 9. Off-line experimental scenes. The scenes are classified according
to illumination environments

A: The number of frames in which the target is correctly
detected.
B: The number of frames in which a non-target is detected.
C: The number of frames in which no objects are detected
as a target.

Table III is the result of the calculation of Precision [%]
and Recall [%]. If a denominator of the value is computed as
zero, it is indicated by “*”. The bold letters show the results,
which well indicate the usefulness of the proposed method.
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TABLE III
RESULTS OF PRECISION AND RECALL IN OFF-LINE EXPERIMENTS.

I II III IV V VI VII

Scene 1 (91 frames)

Precision [%] 100 80.0 81.6 100 100 100 100

Recall [%] 93.8 74.1 67.8 93.8 93.8 93.8 93.8

Scene 2 (78 frames)

Precision [%] 100 60.0 66.7 83.3 100 100 100

Recall [%] 88.3 16.1 6.8 53.6 73.0 73.3 73.3

Scene 3 (196 frames)

Precision [%] 100 16.7 75.8 89.6 100 100 100

Recall [%] 93.8 6.6 63.9 78.4 93.8 93.8 93.8

Scene 4 (660 frames)

Precision [%] 99.6 0.0 0.0 99.8 99.6 99.6 99.6

Recall [%] 87.9 0.0 0.0 77.8 87.9 87.9 82.0

Scene 5 (347 frames)

Precision [%] 100 0.0 * 100 100 100 100

Recall [%] 73.0 0.0 0.0 72.3 73.0 72.7 73.0

Scene 6 (356 frames)

Precision [%] 98.9 * * 93.1 100 100 100

Recall [%] 67.0 0.0 0.0 58.5 59.8 59.4 59.4

Mean and Standard Deviation (SD)
Mean of

Precision
99.7 31.3 56.0 94.3 99.8 99.8 99.8

SD of
Precision

0.4 32.8 32.8 6.3 0.2 0.2 0.2
Mean of
Recall

84.0 16.1 23.1 72.4 80.3 80.1 79.2
SD of
Recall

10.0 26.6 30.4 13.3 12.5 12.7 12.2

(a) High saturation
value of target’s clothes

(b) Low saturation
value of target’s clothes

Fig. 10. Example of saturation changes not according to white balance

Proposed method (I) demonstrated the highest Preision
values except in Scene 5. Additionally, in each scene, Recall
values of the proposed method are higher than that of any
other setting.

However, sometimes no object was detected in spite of
target’s presence, especially in Scene 6. The reason why this
problem was occurred is that the changes in white balance
do not accord with the changes in the color histogram of a
target, as shown in Fig. 10. In the scene, the smear appeared
due to reflected sunlight on windows of a building. The smear
cause the changes in brightness of color images. The changes
in the brightness affected the saturation of target’s color. It
shows that the changes in white balance do not completely
conform to illumination changes.

TABLE IV
THE DETAILS OF ON-LINE EXPERIMENTAL SCENES

Scene Condition Number of
people

Occlusion
the number of

occlusion/
the average frames/

the maximum frames

Shadow

1 back 2.7
3

no appearance9
12

2 back 3.7
2 continuous appearance

by buildings5
7

3 direct 1.2
0 continuous appearance

by buildings0
0

4 direct 2.1
2

no appearance8
9

(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Fig. 11. On-line experimental scenes.These are classified according to
illumination environments.

B. On-line Experiment in Outdoor Environments

The proposed system has been tested in outdoor envi-
ronments where lighting conditions change extremely and
multiple people are present. The system has been tested on
the mobile robot equipped with the stereo camera. The robot
is controlled by a PID controller to adjust the distance from
robot to target and the angle computed by their 3D positions.
In addition, each parameter in Eq. (3) and the evaluation
method are described in section III-A. The effectiveness of
the proposed system is verified by (4).

The time length of the trial is 151 s. The experimental
environments can be classified into four scenes based on
lighting conditions, as shown in Table IV. These scenes are
depicted in Fig. 11. Fig. 12 shows the examples of the results
of target detection. In these figures, the rectangles represent
the target regions, and the dots show the centroids of the
white pixels of the binary images, with reference to Fig. 6(b).
The evaluation of the experiment is given in Table V. Under
all illumination environments, Precision and Recall values
of higher than 91% and 88% are derived, respectively.

Both of these evaluation values in Scene 3 are lower than
those of other scenes, because of high frequency of the
changes in white balance for a few frames. The changes
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(a) Scene 1 (b) Scene 2

(c) Scene 3 (d) Scene 4

Fig. 12. Illustrative frames of target detection in on-line experiments

TABLE V
RESULTS OF PRECISION AND RECALL IN ON-LINE EXPERIMENTS

Scene Number of
frames Precision [%] Recall [%]

1 559 99.4 97.0

2 472 99.8 95.4

3 462 91.6 89.0

4 716 100 98.4

in white balance produced the frames in which no object
was detected, despite a target’s presence, because the target
detection depended solely on location information. With
increase of such frames, the prediction of the target’s position
becomes harder, leading to incorrect detection. Thus, the B
and C frames increase, and both evaluation values decrease.

IV. CONCLUSION

In this paper, a target-tracking system for a mobile robot
equipped with a stereo camera has been described. By
weighting the evaluation values of color and location infor-
mation of humans and a target based on lighting conditions,
robust pursuit of a target is accomplished under varying
illumination conditions. Our method demonstrated more than
91% and 88% of the Precision and Recall values in real
outdoor environments. These values are high enough, and it
can be said that the system is capable of tracking a specific
person under various illumination conditions.

The current system could be further improved by adopt-
ing and verifying other parameters that reflect illumination
changes or other features of a target in order to implement
the system under more severe environments, such as the
presence of more people, frequent changes in illumination,
and cluttered environments.
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