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Abstract— In this paper a real time system for cars, pedes-
trians and bicycle detection and classification is presented. The
system aims at monitoring the traffic flow in urban zones and
uses video data acquired with both mono and stereo cameras.
All the algorithms have been developed in a pixel-wise fashion
in order to be parallelized on a GPU device for real-time
performances. We show that by a GPU implementation of
the time-consuming parts of the proposed system, we perform
detection and classification at about 25 frame per second to
ensure prompt and effective reaction to the monitored events.

I. INTRODUCTION

Systems capable of detecting and recognizing people and
other moving objects from video data are getting more
and more important due to the increasing complexity of
the human environments. Applications include interactions
among humans and devices for traffic management.The main
difficulty in performing this task is that, in real environments,
a large amount of objects categories are captured by a
camera under different environmental conditions. In a street
scenario, for example, pedestrians, cars, and bikes are the
most common moving objects, but it is possible to detect
unexpected objects such as barrows or animals. Moreover,
these objects can interact in complicated ways.

The goal of this work is to detect and classify humans, cars
and bicycles from acquired video streams. Our approach is
based on the work described in [16] for the detection of Re-
gions of Interest, and uses multi-class neural network pattern
classifier for object labeling. The proposed system is based
on a suite of improved algorithms specifically devised by us
for performing background maintenance, shadow detection,
ROI estimation and object classification. All the developed
algorithms are pixel-wise and have been implemented on
a GPU device for real-time performance. The main char-
acteristics of the developed algorithms are the following.
The background model, which is fundamental for moving
object extraction, uses optimized thresholds for capturing
the dynamic of the pixel intensities. The shadow removing
algorithm removes from the detected moving object the
pixels detected as shadow on the basis of several information
extracted from video data, including the depth obtained with
stereo vision, but also the classical between pixel and within
pixel measurements, mixed together with a Dempster-Shafer
data fusion framework. The importance of depth information
in scene analysis and shadow detection has been remarked
by several authors, for example by Torralba et al. [14], who

state that there exists a strong relationship between structure
of the scene and depth. As a matter of fact, thanks to the
stereo information, the proposed shadow detection algorithm
outperforms other classical approaches and helps increasing
the classification accuracy. The detected moving pixels are
grouped together using a Kalman tracking approach to reli-
ably detect the moving objects. Finally, the objects, which are
represented with HOG features, are classified with a multi-
class pattern classifier.

The main contributions of this paper concern the prepro-
cessing of stereo images for ROI detection based on im-
proved background and shadow models. Moreover, another
relevant contribution of this paper is that all the system
algorithms have been implemented on a GPU for real-time
performances.

The rest of this paper is organized as follows. In Section II
we present and discuss the used methodologies. In Section III
the proposed algorithms for the detection of objects, namely
background model, shadow detection, pixel clustering and
tracking, are described, and in Section IV the object classi-
fication is issued. In Section V the GPU implementation of
the overall system is outlined. Experimental results and per-
formances comparison with other state-of-the-art approaches
are presented in Section VI. Finally, in Section VII some
final remarks and conclusions are reported.

II. METHODOLOGY

Starting with a raw stereo video sequence, we compute the
background model to extract the candidate moving pixels by
background subtraction and we refine them by shadow detec-
tion and removing. Candidate moving pixels are grouped by a
method proposed by Ubukata et al. [15] which exploits stereo
information and refine results by a mean-shift clustering. The
algorithm continues as follows. Detected regions are tracked
by a Kalman filter method described in [4]. For each region,
Histogram of Oriented Gradients (HOG) features [3] are
estimated and fed into a multi-class Neural Network which
estimates the probability that a region belongs to a certain
group. It is important to note that cars and pedestrian are
detected using an analysis window whose size is related
to the depth data obtained from the stereo camera. Then,
the labels of the moving regions are computed with the
classification algorithm.
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III. EXTRACTION OF MOVING REGIONS

A. Background model

In this work, to obtain a background model more precise
as possible, we use an histogram-based pixel-wise algorithm.
Background maintenance and other problematic aspects like
shadow detection and noise reduction are faced separately.

First of all, the histogram value is increased by one if a
difference is detected, and by two in case of no differences:
we assign lower weights to pixels that frequently change their
intensity value as they probably belong to moving objects
rather than to the background. In the proposed technique,
the color the background will assume corresponds to the
first peak value of the histogram; this is repeated for all the
histograms of the three color channels.

The difference between background and foreground is
computed to establish which pixels of the image would be
updated. The difference vector ∆ is calculated as follows:
∆ =

[∣∣IRx,y −BRx,y∣∣ , ∣∣IGx,y −BGx,y∣∣ , ∣∣IBx,y −BBx,y∣∣]T where
(x, y) is the pixel position, Ic the intensity of the current
image for the channel c = (Red,Green,Blue), and Bc the
intensity of the background image.

For each image Ic, at each frame t, the color distribution
for each pixel (x, y) is calculated using histogram analysis:

H(t+ 1, a) =

{
H(t, a) + 2 · δ

[
Icx,y − a

]
if ∆ ≥ τ

H(t, a) + δ
[
Icx,y − a

]
otherwise

(1)
where a is a color intensity, δ(·) is the Dirac delta function
defined as

δ[p− q] =

{
1 if p = q
0 if p 6= q

and τ = [τR, τG, τB ]T is a vector of thresholds used to
detect changes in each channel.

At each frame t, for each pixel the numbers of Found
Changes (FC) and Not Found Changes (NFC) are com-
puted. FC and NFC are used to trigger the background
updating phase, which is performed if the number of Changes
Found for the pixel (x, y) is greater than an adaptively
threshold, φx,y , computed as

φx,y = (αx,y − βx,y) · U (2)

In equation (2), αx,y and βx,y are weights describing the
variability of the intensity of the pixel (x, y) and the number
of changed pixels respectively and U is a parameter that
have to be assigned in order to control the update rate of the
background model.

More precisely, if we characterize with the binary matrix
Mx,y(t) the instantaneous change of pixel (x, y), i.e.

Mx,y(t) =

{
1 if ∆ ≥ τ at time t
0 otherwise

(3)

The weights α and β are computed as

αx,y =
1

max (1, σ (x, y))
·

(
1− 1

γ

∑T
i=1Mx,y(i)

T
)

)
, (4)

where the fraction 1
γ is typically around 1

3 , and

βx,y =
1

γ
·
( ∑

x,yMx,y

total pixels number
+ 1

)
, (5)

In conclusion, if FCx,y > φx,y the pixel in the background
is considered to be changed and hence its histogram model is
updated. Moreover, if the model is changed, the background
image should be reconstructed from the histogram model.

The threshold φx,y is computed independently for each
pixel, thus leading to a better description of local dynamic
changes in the image with respect to fixed threshold ap-
proaches as shown in the experimental section.

B. Shadow detection

In real environments, pixels detected by background sub-
traction may belong to a foreground object, or may represent
light effects, or shadows. Changes in illumination can yield
to false detection or can merge blobs. We use the beliefs,
drawn from independent information sources, that the pixels
of the moving region are a shadow. The beliefs are combined
using the Dempster-Shafer theory of evidence.

1) The Dempster-Shafer Fusion: The goal of the
Dempster-Shafer theory of evidence [12], is to represent
uncertainty and lack of knowledge. The theory can combine
different measures of evidence. At the base of the theory is
a finite set of possible hypotheses, say θ = {θ1, . . . , θK}.

In our case, a hypothesis set is defined for each texel in
which is divided the image. Within each texel, the hypothesis
concerns the possibility that the pixel (i, j) corresponds
to an object or not. In other words, we have hypothesis
for each pixel (i, j) of the moving region, namely θ =
{θ1(i, j), θ2(i, j)}, where θ1(i, j) is the belief that the pixel
is a shadow and θ2(i, j) is the belief that the pixel is not a
shadow.

2) Combination of evidence: Consider two Basic Belief
Assignments m1(.) and m2(.) and the corresponding belief
functions bel1(.) and bel2(.). Let Aj and Bk be subsets of
θ. Then m1(.) and m2(.) can be combined to obtain the
belief mass assigned to C ⊂ θ according to the following
formula [12]:

m(C) = m1

⊕
m2 =

∑
j,k,Aj∩Bk=C m1(Aj)m2(Bk)

1−
∑
j,k,Aj∩Bk=∅m1(Aj)m2(Bk)

(6)
The denominator is a normalizing factor, which measures
how much m1(.) and m2(.) are conflicting.

3) Belief functions combination: The combination rule
can be easily extended to several belief functions by re-
peating the rule for new belief functions. Thus the sum
of n belief functions bel1, bel2, . . . , beln, can be formed as
((bel1

⊕
bel2)

⊕
bel3) . . . beln =

⊕n
i=1 beli. It is important

to note that the basic beliefs combination formula given
above assumes that the belief functions to be combined are
independent.
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4) Basic Belief Assignment for shadow detection: The
basic beliefs are assigned with color consistency between
pixels, color consistency within pixels, depth data and the
level of reflected light.

The first belief is based on color consistency between
pixels, defined as follows [7]:

Ψ (x, y) =
∑

c∈R,G,B

∑
(i,j)∈ω(x,y)

∣∣∣dc (i, j)− d
′

c (i, j)
∣∣∣ (7)

where ω (x, y) is a neighborhood of the pixel (x, y), dc(x, y)
is the intensity ratio which minimizes the variation of inten-
sity ∆I of the pixel (x, y): dc(x, y) = min (|ln(∆I)|) , and
d

′

c(x, y) is the same quantity evaluated on the background
image.

The second belief is based on color consistency within
pixels, defined as:

Λ (x, y) = |C1 (x, y)−C
′

1 (x, y)+C2 (x, y)−C
′

2 (x, y) | (8)

where 
C1 (x, y) = arctan

(
IRx,y

IBx,y

)
C2 (x, y) = arctan

(
IGx,y

IBx,y

) (9)

and C
′

1 and C
′

2 are the corresponding quantity for the
background image.

The third belief that the pixel is a shadow is δt(x, y) which
represents the difference of the distances of the pixel from the
camera in the foreground and background images, computed
from the stereo depth. Its meaning is the following: is the
pixel (x, y) of the moving object a real object or is it a
shadow? If it is a real object the difference should be high,
otherwise should be low. Hence if (1− δ) is high the belief
the pixel represents a shadow is also high.

The last belief, ξt(x, y), is the quantity of reflected light
represented by the pixel. Of course, mainly in outdoor
environments, the more reflected light is detected the more
likely the pixel represents a shadow. This can be computed
as follows:

ξt(x, y) = |IRx,y −µRx,y|+ |IGx,y −µGx,y|+ |IBx,y −µBx,y| (10)

where Ix,y is the intensity of the pixel and µx,y its mean
value, computed in an initial training phase.

C. Pixel clustering and tracking

Foreground pixels, segmented from the input image, are
grouped together. To cluster the detected pixels, we use the
method proposed in [15]. To track the pedestrians we use a
slightly modified version of Kalman filter proposed in [4],
which exploits the use of the stereo information.

IV. IMAGE CLASSIFICATION

In this section, we discuss the use of multi-class neural
network for objects classification. In our specific case, human
car and bicycle are the detected moving objects. The Regions
of Interest (ROIs) may contain the mentioned objects, or be
created by image noise. The regions of interest obtained from
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Fig. 1. GPU-based human and car detector.

the previous steps are labelled based on the set likelihood(q),
where q is the region to classify.In our specific case ”Hu-
man”, ”Car” or ”Bicycle” are the detected objects. A forth
class, ”Undefined”, is for objects which cannot be classified
in the described categories. As multiple class are searched,
a multiple class classifier, in our case neural network based,
is well suited to our problem. It is necessary to define a
proper input space. In general, considering the description
of objects, both edges orientations and spatial information
have high relevance. In this paper, as we consider humans
and cars like objects,

A. HOG Features

The HOG feature has shown success in object detection [3]
and they are accepted as one of the best features to capture
gradient information. However, it is quite complex computa-
tionally. The collection of HOG for each image will compose
the Matrix of HOG which is the observation vector Ot, at
time t, used to classify the region. The Matrix of HOG is
then uniformly divided in blocks with partial overlapping.

B. ROI classification

Each ROI estimated as described in Section III is then
processed as a new single image. The image is represented
with HOG features as previously described.

According to [10] the multiclass pattern recognition prob-
lem has been realized by K binary neural networks, trained
separately, with a final decision module, which is used to
select the final classification results based on the output of
all the neural networks.

V. GPU IMPLEMENTATION

Since the algorithms are mostly pixel-wise, there are many
processes that can be computed in parallel on a GPU. A
single GPU board (NVIDIA GeForce 9800 GT with 512
MB) is used for general purpose computation and NVIDIA
CUDA SDK is the software stack, C style. This card is able
to run 512 threads at once.

We divide the GPU-based detector into three modules:
background maintenance, shadow detection, and feature
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extraction. The background maintenance updates a model
of the background to perform the difference between the
background and the current images. The background main-
tenance downloads the input image into GPU and provides to
estimate the difference between the background model and
current image. The shadow detection collects the detection
results and discards pixels labelled as shadow. Candidate
pixels are then returned to CPU, and clustered to estimate
current ROIs. The feature extraction module collects the
detected ROIs and returns the feature array for the image,
with one gradient histogram generated per fragment. Each
ROI is scaled and it renders the feature array from the image,
with one gradient histogram generated per fragment. The
entire procedure is illustrated in Fig. 1.

For human and bicycle detection the best results have
been achieved using 16x16 pixel blocks containing 2x2 cells
of 8x8 pixels. The block stride is 8 pixels (one cell) so
the histogram of a cell is normalized over 4 blocks. Each
histogram has 9 bins. A big amount of memory is required
because, for each pixel, inside the GPU, for each concurrent
thread several data structures have to be stored, namely the
three histograms Hc, M, FC and NFC. Each thread updates
the model of a single pixel of the background. As the pixels
are update by independent threads, this approach does not
require inter-thread communication to synchronize the thread
operations.

Shadow detection algorithm is made by different compo-
nents. At instant t only the pixels detected as changed are
analyzed, with the exception of the background. When the
background image is updated, the background parameters
and data are re-estimated.

The estimation of HOG features can be separated in
three main phases: gradients estimation, block histograms,
normalization. The estimation of the gradients, each thread
computes gradients, magnitudes and orientations is computed
in two steps. First step, we opted to assign a thread for
each pixel in this phase and associate 64 threads for each
blocks in order to compute the local values. To reduce the
computation cost to estimate cells and blocks values, an
integral image is calculated, which requires a temporary
structure to memorize the intermediate results. To optimize
the performances the number of threads associated depends
on the number of orientations (in our case 9) and maximized
the number of threads per blocks. The total number of
operations are log2(rows) + log2(cols) where in the case
of rows the memory access are coalesced. In the histogram
computation step a HOG pixel block is mapped to a CUDA
thread block. The block has 4 cells and each cell 8 columns
of 8 pixels. Moreover we associate a thread to each different
orientation, so we will use 8x4x9=288 threads. Even if
this model might not fully utilize the GPU hardware, it
does have the advantage of scaling to different block/cell
configurations. In our implementation each thread computes
its own histogram and stores it in a shared memory. In the
normalization step, each thread processes one pixel and the
HOG pixel block structure is kept. During the process, each
block is kept in memory and copy back to the global memory

in the same grid once the process terminate.

VI. EXPERIMENTAL RESULTS

We have evaluated our system with the standard database
PETS 20, PETS 2001 and PASCAL VOC2010. Moreover,
a dataset of 2000 frames at 24 frames/s with a resolution
of 320x240 pixels, obtained with the stereo camera Bumble-
bee2, where both humans and cars appear inside the video
scenes, has been acquired. The performance of passive stereo
camera are increasing in these days, and the main advantage
offered by a stereo system is to obtain distance information
from the objects. The stereo camera used in this experiment
is reliable in a distance within 25 meters. In our tests the
distances between camera and objects are among 15 meters.
The scenarios contain both cars and humans in city areas.

A. Background modeling

Fig. 2 shows that the proposed algorithm gives better
similarity results than the effisient histogram based versions,
and provides the best results among the other considered
algorithms. These results have been computed on one core
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Fig. 2. Similarity measures computed on a single core of an Intel Core 2
Quad Q9550 CPU, on a set of 13000 images.

of an Intel Core 2 Quad Q9550 CPU running at 2.83 GHz and
will be used to evaluate the GPU speedup. In this figure, we
indicate with HB, EHB, MoG and LBP the following algo-
rithms: Histogram Based [6], Efficient Histogram Based [5],
Mixture of Gaussians [13], Linear Binary Pattern [9], and
the proposed algorithm.

In Fig. 3, the Recall and Precision measures, obtained
with the same set of images, are reported. It is worth noting
that Precision and Recall are two widely used metrics for
evaluating the correctness of a pattern recognition algorithm.
They can be seen as extended versions of accuracy, a simple
metric that computes the fraction of instances for which the
correct result is returned. The proposed algorithm gives the
highest values of both these measures.

B. Shadow detection

The background subtraction evaluation compares every
ground-truth frame against the results of a specific back-
ground subtraction algorithm. Each comparison determines
False Negatives (FN) and False Positives (FP). If a fore-
ground moving object becomes stationary, we do not measure
the performances for this region because of the ambiguity of
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Fig. 3. Recall and Precision measures computed on the same conditions
of Fig. 2. For each algorithm, Recall is represented by the left bar and
Precision by the right bar.

Method η(%) ξ(%)
Proposed method without stereo 85.6% 83.6%
Proposed method 92.03% 92.83%

TABLE I
SHADOW DETECTION RATE OF THE PROPOSED METHOD. THE

DETECTION RATE HAS BEEN COMPARED TO THE SAME METHODOLOGY

WITHOUT USING THE STEREO INFORMATION.

the situation. The evaluation determines also the number of
True Positives (TP) over all ground-truth frames.

For a quantitative evaluation, we calculate the accuracy
of the cast shadow detection by using two metrics proposed
in [11]. The shadow detection rate η measures the percent-
age of correctly labeled shadow pixels among all detected
ones, while the shadow discrimination rate ξ measures the
discriminative power between foregrounds and shadows.

η =
TPS

TPS + FNS
, ξ =

TPF
TPF + FNF

(11)

where
TPF : the foreground pixels correctly detected;
TPF : the ground-truth pixels which belongs to the fore-

ground minus the shadow detected points which belongs to
the foreground;
FNF : the foreground pixels detected as shadow;
TPS : the shadow pixels correctly detected;
FNS : the shadow pixels detected as foreground.
In Tab. I we report the measures described in Eq. (11) com-

puted with the proposed algorithm on the acquired dataset
with and without the stereo information. We show that the
use of depth raises both the measures by more than 7%. In
Tab. II we report the performance of our shadow detection
algorithm compared with other algorithms. The sequences
are divided in Indoor, Outdoor No Shadow, Outdoor Low
Intensity Shadow, and Outdoor Strong Intensity.

C. ROI classification

In Tab. III we report the classification results for human
and cars (in terms of False Positive and False Negative) com-
puted with the proposed algorithm and with the algorithms
Mixture of Gaussians (MOG) and Saliency-Based (SAL)

Method FP(%) FN(%)
Proposed method (PETS) .06% 8.2%
MOG 30 [1] .48% 7.8%
MOG 100 [1] .11% 20.2%
SAL 30 [1] .11% 19.9%
SAL 100 [1] .07% 27.1%
Proposed method (Stereo) .03% 4.8%

TABLE III
CLASSIFICATION RESULTS OF HUMANS AND CARS FROM PETS01

DATASET OF THE PROPOSED METHOD COMPARED WITH MIXTURE OF

GAUSSIANS (MOG) AND SALIENCY-BASED (SAL) ALGORITHMS [1].

reported in [1]. All the data is obtained with the PETS01
dataset except the results reported in the last line which are
obtained with our dataset.

Two sequences of the PETS dataset, compatible for camera
and objects orientation, are used for training and testing
the classifier. Due to different image resolutions and camera
orientations, we use a different training set for the stereo
camera. From the training set are randomly taken groups
of images. Classification results are shown in Fig. 4. The
left panel of the Fig. 4 shows that the recognition rate is
over 90% using an adequate number of examples from the
training. The right panel shows that classification of cars as
a better performance than classification of humans, and it is
optimal for low FP rate.

Finally, in Tab. IV we report the performances and GPU
computing time of the classification of bicycles.

True Pos. False Pos. Precision Time [ms]
Proposed 78.5 3.2 96.1 58.3

TABLE IV
ACCURACY OF BICYCLE CLASSIFICATION.

In Fig. 5 we report finally two examples of ROI detection
and classification of car, pedestrina and bicycle with the
described system.

(a) Example: humans and riders are
detected.

(b) Example: humans and cars are
detected.

Fig. 5. Example of classification results. In this figure, the point coloured in
blue are the ROI to be classified, the points in green are the pixels estimated
as shadow.

VII. FINAL REMARKS AND CONCLUSION

In this paper, we described a fast human, car and bicycle
detector suited for GPU implementation. The proposed ap-
proach uses the HOG features and multi-class neural network
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Sequence
Indoor OutdoorNS OutdoorLIS OutdoorSIS

Method η ξ η ξ η ξ η ξ
Moving Cast Shadow [17] 0.740 0.751 0.857 0.693 0.703 0.766 0.807 0.781

Proposed 0.818 0.886 0.905 0.896 0.787 0.849 0.884 0.897
Stereo [8] / / 0.916 0.721 0.856 0.704 0.707 0.642

Human Shadow Removal [2] 0.801 0.829 / / / / 0.857 0.832

TABLE II
PERFORMANCE OF THE SHADOW DETECTING ALGORITHM IN DIFFERENT SEQUENCE AND COMPARED WITH OTHER CLASSICAL ALGORITHMS.

Fig. 4. Multiclass neural network classifier performances for cars and humans. Left panel: effect of the stereoinformation. Right curve: ROC on Pets data

classifier. It is flexible and allows to increase the number of
classified objects. In Tab. V we report the computational time
required to compute the proposed algorithm on a CPU and
on a GPU. The last column shows the speedup of the GPU
parts with respect to the corresponding CPU implementation.
All the algorithms, if computed on a GPU, require about 40
ms and about 696 ms if implemented on a CPU. Thus, the
GPU implementation of all the described system allow a real
time operation at about 25 frames/s. The main contributions

CPU [ms] GPU [ms] Speedup
Grab Image 7.2 -

Stereo Subtraction 20.0 0.8 25
Shadow detection 320.2 15.6 20.53

Background Maintenance 318.6 13.6 23.43
Segmentation/Labeling 5.1 0.3 17

HOG 21.4 2.2 9.73
NN Classification 3 0.06 50

Output image 0.3 -
Total 695.8 40.06 17.37

TABLE V
AVERAGE COMPUTATIONAL TIME OF THE PROPOSED APPROACH FOR

PROCESSING 320X240 IMAGES.

of this paper concern the pre-processing of stereo images for
ROI detection based on background and shadow models that
can be efficiently implemented in parallel on a GPU.
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