# 室内における赤外 LED を用いた 移動ロボットの位置・姿勢推定手法

○土方俊介(中央大),梅田和昇(中央大)

## Indoor Self-localization of a Mobile Robot using Infrared LEDs

OShunsuke Hijikata (Chuo Univ.), Kazunori Umeda (Chuo Univ.)

**Abstract:** This paper proposes a simple and robust method for indoor self-localization. Infrared LEDs are used as landmarks. They are set at known positions, and a CCD camera on a mobile robot observes them and self-localization is carried out. Acquisition of the position and orientation of the robot with two or more LEDs is formulated. The nonlinear least squares method is applied. Experiments with a constructed experimental system evaluate the proposed method. For four parameters, observation of two LEDs gives a good localization, and for six parameters, four LEDs.

Key Words: Indoor Self-Localization, Infrared LED, Nonlinear Least Squares Method, Mobile Robot

#### 1. はじめに

ロボットが実世界で自律的に行動するために は自己位置同定をする必要がある.そのためロ ボットや物体の位置を推定する手法が様々提案 されてきた.

屋外で人や物の位置を推定するものに GPS がある.しかし室内では衛星からの電波が遮断 され,また精度も不十分である.そこで室内で の自己位置同定手法が提案されている.一つの 手法として GPS を拡張した自己位置同定手法 がある[1][2].また,超音波を使った手法も提案 されている[3].この原理は GPS の原理と似てい る.いくつかの超音波ビーコンを既知の位置に 設置し,ロボットに取り付けた受信機でビーコ ンとの距離を求める.そして幾何学的にロボッ トの位置・姿勢を推定している.

上記以外にも自己位置同定の研究では CCD カメラから得られる画像情報を用いて位置・姿 勢を推定する手法が広く研究されている. 一つ の手法として View-based approach がある[4][5]. これは様々な位置でのカメラの画像をあらかじ め記憶しておき,取得画像とのマッチングによ って自己位置同定をする手法である.よりロバ ストで高精度な手法としてランドマークを利用 した Model-based approach がある[6][7]. 複数個 のランドマークを環境内に設置する.画像処理 によってランドマークを検出・処理し、ロボッ トの位置・姿勢を求める手法である. この手法 ではランドマークによって自己位置同定の精度 が変わるので様々なランドマークが提案されて いる. ID 化するために 2 次元パターン[8][9]を 用いた研究や赤外光をランドマークとした研究 がされている. 中里ら[10]は天井に再規性反射



Fig.1 Indoor self-localization using infrared LEDs

マーカを貼り付け,赤外光を照射することでマ ーカのみを検出し自己位置を特定している.また,壁に赤外プロジェクタを設置し,天井に赤 外光を投影する.そしてロボットに搭載したカ メラの画像から自己位置を特定する装置も開発 されている[11]. Arai ら[12]は赤外 LED をロボ ットに取り付け 2 体のロボットの相対的な位 置・姿勢を求めている. Welch ら [13]は 3000 個もの赤外 LED を天井に貼り付けて,6 面のフ ォトダイオードからなるセンサで高精度な自己 位置同定を実現している.

赤外光は人には不可視である.赤外光以下の 波長をカットすることでロバストな観測が可能 になるという利点を持つ.そこで本研究では赤 外 LED をランドマークとして用いる[14].使用 する LED は Welch のように多数ではなく数個で ある.赤外 LED の取得画像から非線形最小二乗 法により自己位置同定を行う.

#### 2. 自己位置同定手法

#### 2.1 問題設定

本研究の自己位置同定手法の概要を Fig.1 に 示す.赤外 LED は室内の既知の位置に設置され ているとする. 移動ロボットは赤外透過フィル タ付きの CCD カメラで LED を観測し,自己位 置同定を行う. 各座標系とロボットの位置 (x,y,z)と姿勢(α,β,θ)の関係を Fig.2 に示す. これ らは世界座標系から見たカメラ座標系のパラメ ータを示している.カメラ座標系の原点は CCD カメラのレンズ中心に一致させる. そして y 軸 を光軸と対応させる. 求めるロボットのパラメ ータは与えられた状況によって変わる.環境の 床平面が平らでロボットが車輪式ならば未知パ ラメータは2次元平面(x,y)とz軸周りの回転角θ の3成分で十分である.しかし地面が平らでな いときは微小な変位として回転角(α,β)を加え た5成分が必要である.また、歩行ロボットで は位置(x,y,z)と姿勢(θ,α,β)の 6 成分全てのパラ メータを求める必要がある.

Fig.3 にカメラ座標系と画像座標系の関係を 示す. 既知の位置(x<sub>i</sub>,y<sub>i</sub>,z<sub>i</sub>)に設置したLEDは画像 平面上に(a<sub>i</sub>,b<sub>i</sub>)として観測される. そして観測さ れた(a<sub>i</sub>,b<sub>i</sub>)から未知パラメータを求める.



Fig.2 World and camera coordinate systems



Camera coordinate system



## 2.2 定式化

カメラ座標系の姿勢は(x,y,z)軸周りの回転角 (α,β,θ)を用いて以下の式(1)で表される.

$$R = \begin{bmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos\alpha & -\sin\alpha\\ 0 & \sin\alpha & \cos\alpha \end{bmatrix}_{(1)}$$
$$\times \begin{bmatrix} \cos\beta & 0 & \sin\beta\\ 0 & 1 & 0\\ -\sin\beta & 0 & \cos\beta \end{bmatrix}$$

カメラ座標系の原点からi番目のLEDへのベクトルは $[x_i-x,y_i-y,z_i-z]^T$ で表される.またカメラ 座標系の原点から画像平面上のLEDへの方向ベクトルは $[a_i,1,b_i]^T$ と表すことができる.この2 つのベクトルは平行であるから

$$\begin{bmatrix} a_i \\ 1 \\ b_i \end{bmatrix} / R^{-1} \begin{bmatrix} x_i - x \\ y_i - y \\ z_i - z \end{bmatrix}$$
(2)

が成り立つ.式(2)から(a<sub>i</sub>,b<sub>i</sub>)が以下のように表される.

$$a_{i} = \frac{1}{A} \{ (x_{i} - x)(\cos\theta\cos\beta - \sin\theta\sin\alpha\sin\beta) + (y_{i} - y)(\sin\theta\cos\beta + \cos\theta\sin\alpha\sin\beta) - (z_{i} - z)\cos\alpha\sin\beta \}$$
(3)

$$b_{i} = \frac{1}{A} \{ (x_{i} - x)(\cos\theta \sin\beta - \sin\theta \sin\alpha \cos\beta) + (y_{i} - y)(\sin\theta \sin\beta + \cos\theta \sin\alpha \cos\beta) + (z_{i} - z)\cos\alpha \cos\beta \}$$

$$A = -(x_{i} - x)\sin\theta \cos\alpha + (y_{i} - y)\cos\theta \cos\alpha$$
(4)

$$+(z_i-z)\sin\alpha$$

式(3),(4)の左辺は測定値であり,右辺には最多 で6個の未知パラメータ(x,y,z,α,β,θ)が含まれて いる.この未知パラメータは非線形最小二乗法 により求める.1 個の LED が観測されると式 (3),(4)の2 個の拘束式が成り立つので未知パラ メータ数の半分以上の LED を観測する必要が ある.

#### 3. LED の配置問題

2章で述べたように自己位置同定を行うため には複数個の LED を同時に観測する必要があ る. それに加え, LED が指向性を有する場合に



Fig.4 Directivity of LED and camera's field of view

はロボットが指向角内に位置していなければならない(Fig.4 参照).

ここで指向角を円錐と近似する. ロボットが 指向角内(指向角θ<sub>d</sub>)に存在する位置**x**は

$$\frac{\mathbf{n}_{i} \cdot (\mathbf{x} - \mathbf{x}_{i})}{|\mathbf{n}_{i}||\mathbf{x} - \mathbf{x}_{i}|} \ge \cos \frac{\theta_{d}}{2}$$
(5)

で表される. n<sub>i</sub>はLEDの方向ベクトルである. また,カメラの画角がθ<sub>a</sub>×θ<sub>b</sub>であるときにロボッ トがLEDを観測できるためには

$$\left|a_{i}\right| \ge \tan\frac{\theta_{a}}{2} \tag{6}$$

$$\left|b_{i}\right| \ge \tan \frac{\theta_{b}}{2} \tag{7}$$

を満たす必要がある.式(5)-(7)の拘束式を用いて LED の配置についてシミュレーションを行った.6[m]×6[m]の室内を想定し,LED を高さ 1.5[m],間隔 1[m]として配置する.カメラの画角を 90[deg]×60[deg]とし,LED の指向性は無いものとする.このとき,ロボットを任意の姿勢にしたとき LED を2 個以上観測できるロボットの位置を Fig.5 に示す.LED から 1[m]程度距離が離れていれば自己位置同定が可能である.

### 4. 実験システムの構成

赤外 LED に赤外線リモコン用の EL-117(光電 子工業研究所,940[nm])を用いた. CCD カメラ には XC-77(SONY)を使用し,焦点距離 8[mm] のレンズと波長 800[nm]以上の赤外線を透過す



る赤外透過フィルタ IR-80(Kenko)を装着した. 画角は 56.4[deg]×42.6[deg] である. PC には Pentium4, 1.4GHz 使用のもの(Dell), 画像処理ボ ードには PicPort-Color(Leutron Vision)を使用し, 画像処理ソフト Halcon(MVTec)を用いて画像処 理を行った. Fig.6 に実際の実験環境 (6.96[m]×7.76[m])を示す.また,実験中の赤外 LED を Fig.7 に示す.



Fig.6 Experimental environment with LEDs on wall



Fig.7 Infrared LED



Fig.8 Flow of image processing to detect LEDs



Fig.9 Image of LEDs with IR-80 optical filter

## 5. 赤外 LED の検出

#### 5.1 画像処理

画像処理によって壁に設置された赤外 LED を検出し重心座標を得るまでの処理を Fig.8 に 示す.また Fig.9 に赤外 LED 検出の様子を示す. 赤外透過フィルタにより赤外領域の光以外はカ ットされているので単純な画像処理だけで LED だけを検出することが可能である. LED 以 外に蛍光灯が観測される場合があるが,形状を 限定して絞りを調節することで赤外 LED だけ を抽出でき,ロバストな検出が可能である.

## 5.2 LED 検出の精度

LED が計測される位置は誤差を持っている. そこで LED 検出の精度を実験により求めた.ま ず,カメラを固定した状態で LED の検出精度を 求めた. LED を 20 回観測して標準偏差を求め た. その結果を Table 1 に示す.

| Table 1                                       |
|-----------------------------------------------|
| Standard deviation of LED with a fixed camera |

|                | Standard deviation [pixel] |
|----------------|----------------------------|
| a (horizontal) | 0.017                      |
| b (vertical)   | 0.006                      |



Fig.10 Camera shift for error of LED detection



Fig.11 Detected LED positions with camera shift

この結果を見ると標準偏差が小さすぎる.こ れはカメラを固定したためと考えられる.そこ で、カメラを水平方向に移動させて LED を観測 した.その様子を Fig.10 に示す.カメラを 1[mm] ずつ移動させて 20 回観測した.Fig.11 に観測結 果を示す.カメラを水平方向に動かしたので観 測値の水平方向だけが比例して変化している. 水平及び鉛直方向の観測値に直線を当てはめ、 直線と観測値の差の標準偏差を求めた.その値 を Table 2 に示す.これらの値はサブピクセル精 度で妥当な値になっている.

Table 2 Standard deviation of LED with camera shifts

| Standard de Flation of EED with Camera Shirts |                            |  |
|-----------------------------------------------|----------------------------|--|
|                                               | Standard deviation [pixel] |  |
| a (horizontal)                                | 0.169                      |  |
| b (vertical)                                  | 0.117                      |  |

### 6. 自己位置同定実験

2 章で示した手法を実際に用いて実験を行った. ロボットにカメラを搭載せずにカメラ単体のみで実験を行い, カメラの位置・姿勢を推定した. 2 章でも示したように得られるパラメータは観測する LED の数によって変わってくる.

そこで、Table 3 に示す 5 種類の実験を行った.

|      | LED No. | Unknown parameters            |
|------|---------|-------------------------------|
| Ex.1 | 2       | (x,y,α,θ)                     |
| Ex.2 | 3       | (x,y,α,θ)                     |
| Ex.3 | 3       | $(x,y,\alpha,\beta,\theta)$   |
| Ex.4 | 4       | $(x,y,\alpha,\beta,\theta)$   |
| Ex.5 | 4       | $(x,y,z,\alpha,\beta,\theta)$ |

Table 3 Five experimental conditions

実験 1~3 の LED の配置を Fig.12(a),実験 4,5 の LED の配置を Fig.12(b)に示す.実験 1 では 3 個の LED から 2 個選んで実験をし、3 つの組み 合わせの平均をその実験値とした.実験 1~4 で は高さは z=0.96[m]とした.同様に実験 1,2 では β=0[deg]とした.実験方法を以下に示す.

- カメラを適当な位置(x,y)・姿勢(α,θ)にして LED を観測する.位置 x の範囲は 1.8[m]~4.2[m], y は 2.0[m]~5.1[m], αは -5[deg]~25[deg], θは-25[deg]~25[deg]の範囲 で移動させる.
- 2)カメラで観測した LED から本推定手法に よって未知パラメータを求める.

実験は 1~5 それぞれ 10 回行い,計測誤差と 標準偏差を求めた.その結果を Fig.13 に示す. この結果から全体的に誤差が小さく抑えられて いる.また,LED の数が増えるにつれて誤差が 小さくなっている.それぞれの実験についての 詳細な考察を以下に示す.

- Ex.1:LEDから得られる式と未知パラメータの 数が同じなので厳密解が得られる.比較 的誤差が大きい理由として観測誤差が直 接的にパラメータに影響したためと考え られる.
- Ex.2:実験1にLEDを1個加えて実験を行った. その結果,誤差が小さくなった.これは LEDを1個増やしてシステムを冗長にし たためと考えられる.
- Ex.3:実験2に未知パラメータを1個増やして 実験を行った.その結果,誤差が大きく なってしまった.これはx,θ,α,βの標準偏 差が大きいことから収束過程で局所的最 小値に陥ってしまったためと考えられる.
- Ex.4: 実験3にLEDを1個加えて実験を行った. その結果, 誤差・標準偏差共に小さく抑 えることができた.
- Ex.5:実験4に未知パラメータを加え,カメラの位置・姿勢全てのパラメータを未知と





(a) Position



(b) Orientation Fig.13 Results of self-localization

して実験を行った. その結果, 未知パラ メータを増やしたにも関わらず  $x,y,\theta,\beta$ の 誤差はそれほど変わらなかった. また, zと $\alpha$ の標準偏差が若干大きな値となった. そこで z と $\alpha$ の誤差の相関を調べたとこ ろ相関値が 0.95 あった. これは並進と回 転の区別が難しいことを示している.

## 7. 結論

本論では複数の赤外 LED を室内の壁に設置 して CCD カメラで観察することによってロボ ットの位置・姿勢を推定する手法を提案した. 未知パラメータ数の半分以上の LED を観測し たときに非線形最小二乗法を用いてパラメータ を推定した.実験では赤外 LED の数を増やすこ とにより,精度が高くなることを示した.赤外 LED を4 個観測することでカメラの位置計測誤 差を±30mm,姿勢計測誤差を±1deg に収める ことができた.

本研究の手法では既知の位置の赤外 LED を 観測することでロボットの位置・姿勢を求めて いる.しかし、ロボットが動き回るには室内の 様々な場所に赤外 LED を設置する必要がある. そのときの赤外 LED の位置を知るためにロボ ットの現在の位置・姿勢から赤外 LED の位置を 求めることが有用であると考える.

#### 参考文献

- J. Wang, "Pseudolite Application in Positioning and Navigation: Progress and Problems," Journal of Global Positioning Systems, Vol.1, No.1, pp.48-56, 2002.
- [2] S. Kang and D. Tesar, "Indoor GPS Metrology System with 3D Probe for Precision Applications," American Society of Precision Engineering, 19<sup>th</sup> Annual Meeting, Orlando, Florida, 2004.
- [3] H. Seki, Y. Tanaka, M. Takano and K. Sasaki, "Positioning System for Indoor Mobile Robot Using Active Ultrasonic Beacons," Proc. 3<sup>rd</sup> IFAC Symposium on Intelligent Autonomous Vehicles, Vol.2, pp.681-686, 1998.
- [4] 松本吉央, 稲葉雅幸, 井上博允, "ビューベ ーストアプローチに基づく移動ロボットナ ビゲーション", 日本ロボット学会誌, Vol.20, No.5, pp.506-514, 2002.
- [5] S. Se, D. Lowe, J. Little, "Vision-based Mobile Robot Localization And Mapping Using Scale-Invariant Features," Proc IEEE Int. Conf. Robotics and Automation, 2001.
- [6] M. Betke, L. Gurvits, "Mobile Robot Localization Using Landmarks," Proc. IEEE

Transactions on Robotics and Automation, 1997.

- [7] J. M. Armingol, L. Moreno, A. de la Escalera and M. A. Salichs, "Landmark Perception Planning for Mobile Robot Localization," Proc. IEEE Int. Conf. Robotics and Automation, 1998.
- [8] Y. Ogawa, J. Lee, S. Mori, A. Takagi, C.Lasuga, H. Hashimoto, "The Positioning System Using the Digital Mark Pattern – The Method of Measurement of a Horizontal Distance -," Proc. of the IEEE Int. Conf. on Systems, Man and Cybernetics (SMC'99), 1999.
- [9] R. Katsuki, J. Ota, T. Mizuta, T. Kito, T. Arai, T. Ueyama and T. Nishiyama, "Design of an Artificial Mark to Determine 3D Pose By Monocular Vision," Proc. 2003 IEEE Int. Conf. Robotics and Automation, pp.995-1000, 2003.
- [10] 中里祐介,神原誠之,横矢直和,"不可視マ ーカを用いたウェアラブルARシステムの実 環境における実証実験",電子情報通信学会 技術研究報告, PRMU2004-135, pp.7-12, 2004.
- [11] Evolution Robotics http://www.evolution.com/-products/northstar/
- [12] T. Arai, H. Kimura, J. Ota and D. Kurabayashi, "Real-Time Measuring System of Relative Position on Mobile Robot System," Proc. Int. Symp. Ind. Robots, pp.931-938, 1993.
- [13] G. Welch, G. Bishop, L. Vieei, S. Brumback, and D. Colucci, "High-performance wide-area optical tracking the hiball tracking system" Presence: Teleoperators and Virtual Environments, Vol.10, No.1, pp.1-21, 2001.
- [14] 土方俊介, 梅田和昇, "赤外 LED を用いた 移動ロボットの自己位置同定", 日本機械 学会ロボティクス・メカトロニクス講演 会'05 講演論文集, 1A1-S-040, 2005.